 机器学习课程-温州大学-01机器学习-引言杨立昆(Yann LeCun) 杰弗里·欣顿(Geoffrey Hinton) 本吉奥( Bengio ) 共同获得了2018年计算机科学的最高奖项 ——ACM图灵奖。 机器学习界的执牛耳者 Andrew Ng 中文名吴恩达,斯坦福大学副教 授,前“百度大脑”的负责人与百 度首席科学家。 6 李航, 现任字节跳动科技有限公司人 工智能实验室总监,北京大学、南京 大学客座教授,IEEE 会士,ACM 杰 ,都有相近的高准确度 。于是诞生了机器学习 界的名言: 成功的机器学习应 用不是拥有最好的 算法,而是拥有最 多的数据! 数据决定一切 数据大小 准 确 率 77 参考文献 [1] Andrew Ng. Machine Learning[EB/OL]. StanfordUniversity,2014.https://www.coursera.org/course/ml [2] 李航. 统计学习方法[M] Friedman J. The Elements of Statistical Learning[M]. New York: Springer,2001. [5] CHRISTOPHER M. BISHOP. Pattern Recognition and Machine Learning[M]. New York: Springer,2006. [6] Stephen Boyd, Lieven0 码力 | 78 页 | 3.69 MB | 1 年前3 机器学习课程-温州大学-01机器学习-引言杨立昆(Yann LeCun) 杰弗里·欣顿(Geoffrey Hinton) 本吉奥( Bengio ) 共同获得了2018年计算机科学的最高奖项 ——ACM图灵奖。 机器学习界的执牛耳者 Andrew Ng 中文名吴恩达,斯坦福大学副教 授,前“百度大脑”的负责人与百 度首席科学家。 6 李航, 现任字节跳动科技有限公司人 工智能实验室总监,北京大学、南京 大学客座教授,IEEE 会士,ACM 杰 ,都有相近的高准确度 。于是诞生了机器学习 界的名言: 成功的机器学习应 用不是拥有最好的 算法,而是拥有最 多的数据! 数据决定一切 数据大小 准 确 率 77 参考文献 [1] Andrew Ng. Machine Learning[EB/OL]. StanfordUniversity,2014.https://www.coursera.org/course/ml [2] 李航. 统计学习方法[M] Friedman J. The Elements of Statistical Learning[M]. New York: Springer,2001. [5] CHRISTOPHER M. BISHOP. Pattern Recognition and Machine Learning[M]. New York: Springer,2006. [6] Stephen Boyd, Lieven0 码力 | 78 页 | 3.69 MB | 1 年前3
 机器学习课程-温州大学-03机器学习-逻辑回归[1] HOSMER D W, LEMESHOW S, STURDIVANT R X. Applied logistic regression[M]. New Jersey: Wiley New York.2000. [2] Andrew Ng. Machine Learning[EB/OL]. Stanford University,2014. https://www.coursera.org/course/ml Friedman J. The Elements of Statistical Learning[M]. New York: Springer,2001. [5] CHRISTOPHER M. BISHOP. Pattern Recognition and Machine Learning[M]. New York: Springer,2006. [6] Stephen Boyd, Lieven0 码力 | 23 页 | 1.20 MB | 1 年前3 机器学习课程-温州大学-03机器学习-逻辑回归[1] HOSMER D W, LEMESHOW S, STURDIVANT R X. Applied logistic regression[M]. New Jersey: Wiley New York.2000. [2] Andrew Ng. Machine Learning[EB/OL]. Stanford University,2014. https://www.coursera.org/course/ml Friedman J. The Elements of Statistical Learning[M]. New York: Springer,2001. [5] CHRISTOPHER M. BISHOP. Pattern Recognition and Machine Learning[M]. New York: Springer,2006. [6] Stephen Boyd, Lieven0 码力 | 23 页 | 1.20 MB | 1 年前3
 机器学习课程-温州大学-04机器学习-朴素贝叶斯TOM M MICHELLE. Machine Learning[M]. New York: McGraw-Hill Companies,Inc,1997. [2] Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning[M]. New York: Springer,2001. [3] CHRISTOPHER CHRISTOPHER M. BISHOP. Pattern Recognition and Machine Learning[M]. New York: Springer,2006. [4] Zhang H., The optimality of naïve Bayes[C]//Proceedings of the 17th International Florida Artificial Intelligence Intelligence Research Society Conference (FLAIRS), Miami, FL, 562-567, 2004. [5] Ng A. Y. and M. I. Jordan, On discriminative vs. generative classifiers: A comparison of logistic regression and naïve Bayes[C]//0 码力 | 31 页 | 1.13 MB | 1 年前3 机器学习课程-温州大学-04机器学习-朴素贝叶斯TOM M MICHELLE. Machine Learning[M]. New York: McGraw-Hill Companies,Inc,1997. [2] Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning[M]. New York: Springer,2001. [3] CHRISTOPHER CHRISTOPHER M. BISHOP. Pattern Recognition and Machine Learning[M]. New York: Springer,2006. [4] Zhang H., The optimality of naïve Bayes[C]//Proceedings of the 17th International Florida Artificial Intelligence Intelligence Research Society Conference (FLAIRS), Miami, FL, 562-567, 2004. [5] Ng A. Y. and M. I. Jordan, On discriminative vs. generative classifiers: A comparison of logistic regression and naïve Bayes[C]//0 码力 | 31 页 | 1.13 MB | 1 年前3
 Lecture 7: K-Means≤ L(µ(t−1), X, Z(t−1)) because the new Z(t) = arg minZ L(µ(t−1), X, Z) When we update µ from µ(t−1) to µ(t) L(µ(t), X, Z(t)) ≤ L(µ(t−1), X, Z(t)) because the new µ(t) = arg minµ L(µ, X, Z(t)) Feng clusters MST-based method: Build a minimum spanning tree from the dissim- ilarity graph, and then make new clusters by breaking the link corre- sponding to the largest dissimilarity Feng Li (SDU) K-Means December containing all the data G Measure the average dissimilarity of i ∈ G to all the other i′ ∈ G dG i = 1 nG � i′∈G di,i′ Remove the most dissimilar data i∗ and put it in its own cluster H i∗ = arg max i∈G0 码力 | 46 页 | 9.78 MB | 1 年前3 Lecture 7: K-Means≤ L(µ(t−1), X, Z(t−1)) because the new Z(t) = arg minZ L(µ(t−1), X, Z) When we update µ from µ(t−1) to µ(t) L(µ(t), X, Z(t)) ≤ L(µ(t−1), X, Z(t)) because the new µ(t) = arg minµ L(µ, X, Z(t)) Feng clusters MST-based method: Build a minimum spanning tree from the dissim- ilarity graph, and then make new clusters by breaking the link corre- sponding to the largest dissimilarity Feng Li (SDU) K-Means December containing all the data G Measure the average dissimilarity of i ∈ G to all the other i′ ∈ G dG i = 1 nG � i′∈G di,i′ Remove the most dissimilar data i∗ and put it in its own cluster H i∗ = arg max i∈G0 码力 | 46 页 | 9.78 MB | 1 年前3
 机器学习课程-温州大学-05机器学习-机器学习实践Andrew Ng. Machine Learning[EB/OL]. StanfordUniversity,2014. https://www.coursera.org/course/ml [2] Peter Harrington.机器学习实战[M]. 北京:人民邮电出版社,2013. [3] TOM M MICHELLE. Machine Learning[M]. New York: McGraw-Hill Friedman J. The Elements of Statistical Learning[M]. New York: Springer,2001. [5] CHRISTOPHER M. BISHOP. Pattern Recognition and Machine Learning[M]. New York: Springer,2006. [6] Kohavi R.,Scaling up the0 码力 | 33 页 | 2.14 MB | 1 年前3 机器学习课程-温州大学-05机器学习-机器学习实践Andrew Ng. Machine Learning[EB/OL]. StanfordUniversity,2014. https://www.coursera.org/course/ml [2] Peter Harrington.机器学习实战[M]. 北京:人民邮电出版社,2013. [3] TOM M MICHELLE. Machine Learning[M]. New York: McGraw-Hill Friedman J. The Elements of Statistical Learning[M]. New York: Springer,2001. [5] CHRISTOPHER M. BISHOP. Pattern Recognition and Machine Learning[M]. New York: Springer,2006. [6] Kohavi R.,Scaling up the0 码力 | 33 页 | 2.14 MB | 1 年前3
 机器学习课程-温州大学-06机器学习-KNN算法当回溯到根节点时,算法结束,此时保存 的最近邻节点就是最终的最近邻。 遍历完(4,5)的左右叶子节点,发现与当 前最优距离相等,不更新最近邻。 所以(4,4)的最近邻为(4,5)。 25 参考文献 [1] Andrew Ng. Machine Learning[EB/OL]. StanfordUniversity,2014.https://www.coursera.org/course/ml [2] 李航. 统计学习方法[M] Friedman J. The Elements of Statistical Learning[M]. New York: Springer,2001. [6] CHRISTOPHER M. BISHOP. Pattern Recognition and Machine Learning[M]. New York: Springer,2006. [7] Stephen Boyd, Lieven0 码力 | 26 页 | 1.60 MB | 1 年前3 机器学习课程-温州大学-06机器学习-KNN算法当回溯到根节点时,算法结束,此时保存 的最近邻节点就是最终的最近邻。 遍历完(4,5)的左右叶子节点,发现与当 前最优距离相等,不更新最近邻。 所以(4,4)的最近邻为(4,5)。 25 参考文献 [1] Andrew Ng. Machine Learning[EB/OL]. StanfordUniversity,2014.https://www.coursera.org/course/ml [2] 李航. 统计学习方法[M] Friedman J. The Elements of Statistical Learning[M]. New York: Springer,2001. [6] CHRISTOPHER M. BISHOP. Pattern Recognition and Machine Learning[M]. New York: Springer,2006. [7] Stephen Boyd, Lieven0 码力 | 26 页 | 1.60 MB | 1 年前3
 机器学习课程-温州大学-09机器学习-支持向量机CORTES C, VAPNIK V. Support-vector networks[J]. Machine learning, 1995, 20(3): 273–297. [2] Andrew Ng. Machine Learning[EB/OL]. StanfordUniversity,2014.https://www.coursera.org/course/ml [3] 李航. 统计学习方法[M] Friedman J. The Elements of Statistical Learning[M]. New York: Springer,2001. [5] CHRISTOPHER M. BISHOP. Pattern Recognition and Machine Learning[M]. New York: Springer,2006. [6] Stephen Boyd, Lieven0 码力 | 29 页 | 1.51 MB | 1 年前3 机器学习课程-温州大学-09机器学习-支持向量机CORTES C, VAPNIK V. Support-vector networks[J]. Machine learning, 1995, 20(3): 273–297. [2] Andrew Ng. Machine Learning[EB/OL]. StanfordUniversity,2014.https://www.coursera.org/course/ml [3] 李航. 统计学习方法[M] Friedman J. The Elements of Statistical Learning[M]. New York: Springer,2001. [5] CHRISTOPHER M. BISHOP. Pattern Recognition and Machine Learning[M]. New York: Springer,2006. [6] Stephen Boyd, Lieven0 码力 | 29 页 | 1.51 MB | 1 年前3
 机器学习课程-温州大学-13机器学习-人工神经网络2016. [3] Andrew Ng. Machine Learning[EB/OL]. StanfordUniversity,2014. https://www.coursera.org/course/ml [4] CHRISTOPHER M. BISHOP. Pattern Recognition and Machine Learning[M]. New York: Springer,20060 码力 | 29 页 | 1.60 MB | 1 年前3 机器学习课程-温州大学-13机器学习-人工神经网络2016. [3] Andrew Ng. Machine Learning[EB/OL]. StanfordUniversity,2014. https://www.coursera.org/course/ml [4] CHRISTOPHER M. BISHOP. Pattern Recognition and Machine Learning[M]. New York: Springer,20060 码力 | 29 页 | 1.60 MB | 1 年前3
 机器学习课程-温州大学-03深度学习-PyTorch入门 创建与另一个张量具有相同大小的张量,请使用 torch.*_like  如torch.rand_like()  创建与其他张量具有相似类型但大小不同的张量,请使 用tensor.new_*创建操作。 1.Tensors张量的概念 6  查看张量的属性  查看Tensor类型  tensor1 = torch.randn(2,3) #形状为(2,3)一组从标准正态分布 Adam(model.parameters(), lr=learning_rate) 39 参考文献 1. IAN GOODFELLOW等,《深度学习》,人民邮电出版社,2017 2. Andrew Ng,http://www.deeplearning.ai 3. Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag0 码力 | 40 页 | 1.64 MB | 1 年前3 机器学习课程-温州大学-03深度学习-PyTorch入门 创建与另一个张量具有相同大小的张量,请使用 torch.*_like  如torch.rand_like()  创建与其他张量具有相似类型但大小不同的张量,请使 用tensor.new_*创建操作。 1.Tensors张量的概念 6  查看张量的属性  查看Tensor类型  tensor1 = torch.randn(2,3) #形状为(2,3)一组从标准正态分布 Adam(model.parameters(), lr=learning_rate) 39 参考文献 1. IAN GOODFELLOW等,《深度学习》,人民邮电出版社,2017 2. Andrew Ng,http://www.deeplearning.ai 3. Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag0 码力 | 40 页 | 1.64 MB | 1 年前3
 机器学习课程-温州大学-11机器学习-降维主成分各个特征维度的含义具有一定的模糊性,不如原始样本特征的解释性强 2.方差小的非主成分也可能含有对样本差异的重要信息,因降维丢弃可能对后续数 据处理有影响 50 参考文献 [1] Andrew Ng. Machine Learning[EB/OL]. StanfordUniversity,2014.https://www.coursera.org/course/ml [2] Hinton 清华大学出版社,2019. [5] Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning[M]. New York: Springer,2001. [6] Peter Harrington.机器学习实战[M]. 北京:人民邮电出版社,2013. 51 谢 谢!0 码力 | 51 页 | 3.14 MB | 1 年前3 机器学习课程-温州大学-11机器学习-降维主成分各个特征维度的含义具有一定的模糊性,不如原始样本特征的解释性强 2.方差小的非主成分也可能含有对样本差异的重要信息,因降维丢弃可能对后续数 据处理有影响 50 参考文献 [1] Andrew Ng. Machine Learning[EB/OL]. StanfordUniversity,2014.https://www.coursera.org/course/ml [2] Hinton 清华大学出版社,2019. [5] Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning[M]. New York: Springer,2001. [6] Peter Harrington.机器学习实战[M]. 北京:人民邮电出版社,2013. 51 谢 谢!0 码力 | 51 页 | 3.14 MB | 1 年前3
共 60 条
- 1
- 2
- 3
- 4
- 5
- 6













