keras tutorialclassification IMDB Movie reviews sentiment classification Reuters newswire topics classification MNIST database of handwritten digits Fashion-MNIST database of fashion articles Boston housing price regression dataset Let us use the MNIST database of handwritten digits (or minst) as our input. minst is a collection of 60,000, 28x28 grayscale images. It contains 10 digits find the sentiment analysis of the given text. Let us create a LSTM model to analyze the IMDB movie reviews and find its positive/negative sentiment. The model for the sequence analysis can be represented0 码力 | 98 页 | 1.57 MB | 1 年前3
深度学习与PyTorch入门实战 - 47. RNN原理循环神经网络 主讲人:龙良曲 Sentiment Analysis I hate this boring movie ?@?1 + ?1 Pos/Neg ?@?2 + ?2 ?@?3 + ?3 ?@?4 + ?4 ?@?5 + ?5 Flaws ▪ Long sentence ▪ 100+ words ▪ too much parametes [w, b] ▪ no context consistent tensor Naïve version I hate this boring movie ?@?1 + ?1 Pos/Neg ?@?2 + ?2 ?@?3 + ?3 ?@?4 + ?4 ?@?5 + ?5 Weight sharing I hate this boring movie ?@? + ? Pos/Neg ?@? + ? ?@? + ? ?@? + ? ?@ @? + ? Consistent memory I hate this boring movie ?@??ℎ + ℎ0@?ℎℎ Pos/Neg ?? ?@??ℎ + ℎ1@?ℎℎ ?@??ℎ + ℎ2@?ℎℎ ?@??ℎ + ℎ2@?ℎℎ ?@??ℎ + ℎ3@?ℎℎ ?? ?? ?? ?? ?? Folded model feature ??@??ℎ + ℎ?@?ℎℎ [0,00 码力 | 12 页 | 705.66 KB | 1 年前3
动手学深度学习 v2.0而屏蔽词元(例如,在“this movie is great”中选择掩蔽和预测“great”),则在输入中将其替换为: • 80%时间为特殊的““词元(例如,“this movie is great”变为“this movie is ”; • 10%时间为随机词元(例如,“this movie is great”变为“this movie is drink”); • 10%时间内为不变的标签词元(例如,“this movie is great”变为“this movie is great”)。 请注意,在15%的时间中,有10%的时间插入了随机词元。这种偶然的噪声鼓励BERT在其双向上下文编码中 不那么偏向于掩蔽词元(尤其是当标签词元保持不变时)。 我们实现了下面的MaskLM类来预测BERT预训练的掩蔽语言模型任务中的掩蔽标记。预测使用单隐藏层的多 层感知机(self 由于情感可以被分类为离散的极性或尺度(例如,积极的和消极的),我们可以将情感分析看作一项文本分类 任务,它将可变长度的文本序列转换为固定长度的文本类别。在本章中,我们将使用斯坦福大学的大型电影 评论数据集(large movie review dataset)200进行情感分析。它由一个训练集和一个测试集组成,其中包含 从IMDb下载的25000个电影评论。在这两个数据集中,“积极”和“消极”标签的数量相同,表示不同的情感 0 码力 | 797 页 | 29.45 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112train data: 25000 len of test data: 25000 example text: ['If', 'you', "'ve", 'seen', 'this', 'movie', … '.'] example label: pos Unique tokens in TEXT vocabulary: 10002 Unique tokens in LABEL vocabulary: 层包含进反向传播算法中,利用梯度下降来微调词向量表示方法。 11.2 循环神经网络 现在我们来考虑如何处理序列信号,以文本序列为例,考虑一个句子: “I hate this boring movie” 通过 Embedding 层,可以将它转换为 shape 为[?, ?, ?]的张量,?为句子数量,?为句子长 度,?为词向量长度。上述句子可以表示为 shape 为[1,5,10]的张量,其中 的网络擅长处理序列数据 呢? 预览版202112 第 11 章 循环神经网络 6 I 神经网络 [1.1,0.2,…] dislike the boring movie [2.2,0.3,…] [3.1,0.6,…] [4.8,0.9,…] [5.1,0.2,…] 输入序列 Embedding层 词向量 分类网络 积极、消极类别0 码力 | 439 页 | 29.91 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturespre-training task of predicting the actor, given a fixed number of the actor’s other cast members in each movie. As a result of this step, actors working together would get embedded closer to each other. For example0 码力 | 53 页 | 3.92 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning TechniquesProject: IMDB Reviews Sentiment Classification The imdb reviews dataset contains samples of labeled movie reviews. A label value 1 indicates a positive review while a value 0 implies a negative review. We0 码力 | 56 页 | 18.93 MB | 1 年前3
Lecture 1: Overviewitself Example 2 T: Recognizing hand-written words P: Percentage of words correctly classified E: Database of human-labeled images of handwritten words Feng Li (SDU) Overview September 6, 2023 10 / 57 Categorize email messages as spam or legitimate P: Percentage of email messages correctly classified E: Database of emails, some with human-given labels Example 4 T: Driving on four-lane highways using vision0 码力 | 57 页 | 2.41 MB | 1 年前3
《TensorFlow 2项目进阶实战》2-快速上手篇:动⼿训练模型和部署服务Model 训练模型 保存和加载 h5 模型 保存和加载 SavedModel 模型 Fashion MNIST 数据集介绍 Original MNIST dataset The MNIST database of handwritten digits, available from this page, has a training set of 60,000 examples, and0 码力 | 52 页 | 7.99 MB | 1 年前3
共 8 条
- 1













