积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(25)机器学习(25)

语言

全部英语(20)中文(简体)(5)

格式

全部PDF文档 PDF(25)
 
本次搜索耗时 0.025 秒,为您找到相关结果约 25 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    quantization, clustering, and both. We would need to train a model with each of these four options to make an informed decision. Blessed with a large research community, the deep learning field is growing BOS, it took 16 runs to converge to the optimum hyperparameters. However, there are other ways to make BOS run quicker by using smaller datasets, early stopping or low resolution inputs etc. Early Stopping combination( combine_op, self.apply_op(op1, input_1), self.apply_op(op2, input_2) ) return output def make_cell(self, cell_config, branches): """ It constructs a cell based on the cell_config and the branches
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    distinct objects being shown, we have made this process more label efficient. Similarly, if you could make the model training process label efficient, you would incur a lower cost to meet a performance benchmark model? Turns out, using learning techniques to improve sample and label efficiency, often helps to make resource efficient models feasible. By feasible, we mean that the model meets the bar for quality instance, a dataset of cat images would likely have the cats positioned at various angles. It would make sense to have rotational transformation for such a dataset. A human face dataset would be less likely
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    predict a numerical quantity. The amount of customer spends, the blood pressure of a patient, etc. To make predictions, we have various inputs, Gene expression levels for predicting tumor type, age and income exploit what it already knows in order to obtain re- ward, but it also has to explore in order to make better action selections in the future. Dilemma: neither exploitation nor exploration can be pursued training data to estimate parameters of it Use these parameters to make predictions for the test data. Such approaches save computation when we make predictions for test data. That is, estimate parameters once
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    task will predict the hidden part. You can also play around with the arrangement of the input, and make the model predict the right order of the elements of . The next question is where do we get the data lens of efficiency, using pre-trained models and fine-tuning them on a small labeled dataset helps make our model training data-efficient and compute-efficient. Pre-training + Fine-tuning helps the models you can refer to this guide for pre-training BERT in Keras, and this guide for some optimizations to make it efficient. Also consider going through the work by Izsak et al.11 which presents a collection of
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    Chapter 2 - Compression Techniques “I have made this longer than usual because I have not had time to make it shorter.” Blaise Pascal In the last chapter, we discussed a few ideas to improve the deep learning charge of the Mars Rover! The rover is transmitting images back to earth. However, transmission costs make it infeasible to send the original image. Can we compress the transmission, and decompress it on process is nothing but (cue drum roll!) ...Quantization! Before we get our hands dirty, let us first make two reasonable assumptions: 1. We know that the value of x will lie between -10.0 (xmin) and 10.0
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    bright colors or upgrade to stronger lamps. However, the lighting gains would be substantial if we make structural changes to add a couple of windows and a balcony. Similarly, to gain orders of magnitude manually assign them a label identifying which class a given animal belongs to. Puppies and cats would make instant favorites in the petting zoo because they are both cute and safe to handle. A snake, bear raccoon would not be appropriate because they are dangerous animals. Similarly, the mouse will not make the cut because while it is not dangerous, not many people will find it cute. Refer to Table 4-2
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 深度学习下的图像视频处理技术-沈小勇

    Effectiveness How to make good use of multiple frames? Remaining Challenges 39 Data from Vid4 [Ce Liu et al.] Bicubic x4 Misalignment Occlusion Large motion Effectiveness How to make good use of multiple Bicubic x4 Effectiveness How to make good use of multiple frames? Are the generated details real? Remaining Challenges 41 Image SR Truth Effectiveness How to make good use of multiple frames? Are VDSR [Kim et al., 2016] ESPCN [Shi et al., 2016] VSRNet [Kappeler et al, 2016] Effectiveness How to make good use of multiple frames? Are the generated details real? Model Issues One model for one setting
    0 码力 | 121 页 | 37.75 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    consume. Having demonstrated the rapid growth of deep learning models, let us now move on to how we can make this growth sustainable with efficient deep learning. 5 Brown, Tom B., et al. "Language models are while keeping the latency the same (and vice versa). They are pareto-optimal models and together make the pareto-frontier. However, certain models might offer better trade-offs than others. In case we from the red dots in Figure 3 to the green dots on the pareto-frontier. Having such a toolbox to make our models pareto-optimal has the following benefits: Sustainable Server-Side Scaling Training and
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    MacOS 系统。第一步操作是:“克隆仓库并进入该目录: git clone https://github.com/ggerganov/llama.cpp cd llama.cpp 然后运行 make 命令: make 然后你就能使用 llama.cpp 运行 GGUF 文件。 8 Chapter 1. 文档 Qwen 1.4.2 运行 Qwen 的 GGUF 文件 我们在 Hugging Face cached_data_dict[i] = ret return ret def make_supervised_data_module( tokenizer: transformers.PreTrainedTokenizer, data_args, max_len, ) -> Dict: """Make dataset and collator for supervised fine-tuning eval_dataset = None return dict(train_dataset=train_dataset, eval_dataset=eval_dataset) 然 后 我 们 利 用 make_supervised_data_module , 通 过 使 用 SupervisedDataset 或 LazySupervisedDataset 来构建数据集。 def train():
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 keras tutorial

    prepared for professionals who are aspiring to make a career in the field of deep learning and neural network framework. This tutorial is intended to make you comfortable in getting started with the Keras choice for deep learning applications. Features Keras leverages various optimization techniques to make high level neural network API easier and more performant. It supports the following features: models. Well, Most of the ANN doesn’t remember the steps from previous situations and learned to make decisions based on context in training. Meanwhile, RNN stores the past information and all its decisions
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
共 25 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterAutomationTechniquesLectureOverviewAdvancedTechnicalReviewCompressionArchitectures深度学习图像视频处理技术沈小勇IntroductionAI模型千问qwen中文文档kerastutorial
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩