积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(25)机器学习(25)

语言

全部英语(16)中文(简体)(9)

格式

全部PDF文档 PDF(25)
 
本次搜索耗时 0.033 秒,为您找到相关结果约 25 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    configuration inside keras.json file. We can perform some pre-defined operations to know backend functions. 3. Keras ― Backend Configuration Keras 10 Theano Theano is an open source sub-classing Keras models. Core Modules Keras also provides a lot of built-in neural network related functions to properly create the Keras model and Keras layers. Some of the function are as follows:  many activation function like softmax, relu, etc.,  Loss module - Loss module provides loss functions like mean_squared_error, mean_absolute_error, poisson, etc.,  Optimizer module - Optimizer
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    Function) L ?, ? ? = ? − ? ? 2 3. 绝对损失函数(Absolute Loss Function) L ?, ? ? = ? − ? ? 4. 对数损失函数(Logarithmic Loss Function) L ?, ? ? ? = −log? ? ? 机器学习的概念-损失函数 23 根据上述损失函数模型,我们可知,损失函数值越小,模型性能越好。给定一个数据集,我们将
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    mean_absolute_percentage_error . . . . . . . . . . . . . . . . . . . . . . . . 134 7.2.4 mean_squared_logarithmic_error . . . . . . . . . . . . . . . . . . . . . . . 134 7.2.5 squared_hinge . . . . . . . . . age_error mean_absolute_percentage_error(y_true, y_pred) 7.2.4 mean_squared_logarithmic_error mean_squared_logarithmic_error(y_true, y_pred) 7.2.5 squared_hinge squared_hinge(y_true, y_pred) 7.2
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    cross-entropy loss. We would refer you to the SimCLR paper for more details about the chosen loss functions and other alternatives considered. Once the desired test loss is achieved, the projection head optimizing non-convex functions, where multiple local minima might exist. Typical deep learning objective functions are non-convex too, and directly working with these functions might lead to the optimizer complexity you want to introduce in the training. Figure 6-12 shows multiple examples of pacing functions. The x-axis is the training iteration i.e. the variable described above, and the y-axis is the fraction
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    jhj(ω) (12) In fact, L(ω, α, β ) can be treated as a weighted sum of the objective and constraint functions. αi is the so-called Lagrange multiplier associated with gi(ω) ≤ 0, while β i is the one associated supposed to the original constrained minimization problem); ii) G is an infimum of a set of affine functions and thus is a concave function regardless of the original problem; iii) G can be −∞ for some α and Karush-Kuhn-Tucker (KKT) Conditions We assume that the objective function and the inequality constraint functions are differentiable. Again, let ω∗ and (α∗, β ∗) be any primal and dual optimal points, respectively
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    Testing Neural Networks in Pytorch ● Dataset & Dataloader ● Tensors ● torch.nn: Models, Loss Functions ● torch.optim: Optimization ● Save/load models Prerequisites ● We assume you are already familiar mean() ● Addition z = x + y ● Subtraction z = x - y ● Power y = x.pow(2) Common arithmetic functions are supported, such as: Tensors – Common Operations Tensors – Common Operations ● Transpose: official documentation for more information on data types. Tensors – PyTorch v.s. NumPy ● Many functions have the same names as well PyTorch NumPy x.reshape / x.view x.reshape x.squeeze() x.squeeze()
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    1: send the conversation and available functions to the model messages = [{ 'role': 'user', 'content': "What's the weather like in San Francisco?" }] functions = [{ (续下页) 38 Chapter 1. 文档 Qwen (接上页) print('# Assistant Response 1:') responses = [] for responses in llm.chat(messages=messages, functions=functions, stream=True): print(responses) messages.extend(responses) # extend conversation with assistant's function # Note: the JSON response may not always be valid; be sure to handle errors available_functions = { 'get_current_weather': get_current_weather, } # only one function in this example, but you
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    y) P(a1 ≤ X ≤ b1, a2 ≤ Y ≤ b2) = � b1 a1 � b2 a2 f (x, y)dxdy Marginal probability density functions fX(x) = � ∞ −∞ f (x, y)dy for − ∞ < x < ∞ fY (x) = � ∞ −∞ f (x, y)dx for − ∞ < y < ∞ Extension f : Rn → R be the objective function, gj : Rn → R (with j = 1, · · · , m) be the m constraints functions, all of which have continuous fist derivatives. Let x∗ be an optimal solution to the following optimization �m i=1 1(y(i) = y) + 1 m + k Feng Li (SDU) GDA, NB and EM September 27, 2023 82 / 122 Convex Functions A set C is convex if the line segment between any two points in C lies in C, i.e., for ∀x1, x2
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    can change them during runtime. • It includes many layers as Torch. • It includes lot of loss functions. • It allows building networks whose structure is dependent on computation itself. • NLP: account like • TensorboardX (monitor training) • PyTorchViz (visualise computation graph) • Various other functions • loss (MSE,CE etc..) • optimizers Prepare Input Data •Load data •Iterate over examples Train other hyper-parameters as well!) and performs the updates Loss • Loss • Various predefined loss functions to choose from • L1, MSE, Cross Entropy …... Model • In PyTorch, a model is represented by a regular
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 pytorch 入门笔记-03- 神经网络

    为了说明,让我们向后退几步: print(loss.grad_fn) # MSELoss print(loss.grad_fn.next_functions[0][0]) # Linear print(loss.grad_fn.next_functions[0][0].next_functions[0][0]) # ReLU
    0 码力 | 7 页 | 370.53 KB | 1 年前
    3
共 25 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
kerastutorial机器学习课程温州大学01引言Keras基于Python深度EfficientDeepLearningBookEDLChapterAdvancedTechniquesTechnicalReviewLectureNotesonSupportVectorMachinePytorchTutorialAI模型千问qwen中文文档GaussianDiscriminantAnalysisNaiveBayesPyTorchpytorch入门笔记03神经网络神经网神经网络
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩