积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(21)机器学习(21)

语言

全部中文(简体)(11)英语(10)

格式

全部PDF文档 PDF(21)
 
本次搜索耗时 0.050 秒,为您找到相关结果约 21 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lecture Notes on Gaussian Discriminant Analysis, Naive

    Lecture Notes on Gaussian Discriminant Analysis, Naive Bayes and EM Algorithm Feng Li fli@sdu.edu.cn Shandong University, China 1 Bayes’ Theorem and Inference Bayes’ theorem is stated mathematically through parameters θ = {P(X = x | Y = y), P(Y = y)}x,y. 2 Gaussian Discriminant Analysis In Gaussian Discriminate Analysis (GDA) model, we have the following as- sumptions: • A1: Y ∼ Bernoulli(ψ): Y follows ˜y | X = ˜x) = pY |X(˜y | ˜x) = p(˜x | ˜y)p(˜y) p(˜x) where ˜y = 0, 1. 3 Gaussian Discriminant Analysis and Logistic Regression By far, we introduce two classification algorithms, Logistic Regression
    0 码力 | 19 页 | 238.80 KB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    Lecture 5: Gaussian Discriminant Analysis, Naive Bayes and EM Algorithm Feng Li Shandong University fli@sdu.edu.cn September 27, 2023 Feng Li (SDU) GDA, NB and EM September 27, 2023 1 / 122 Outline Outline 1 Probability Theory Review 2 A Warm-Up Case 3 Gaussian Discriminate Analysis 4 Naive Bayes 5 Expectation-Maximization (EM) Algorithm Feng Li (SDU) GDA, NB and EM September 27, 2023 2 / 122 = � −1 −1.5 � Feng Li (SDU) GDA, NB and EM September 27, 2023 41 / 122 Gaussian Discriminant Analysis (Contd.) Y ∼ Bernoulli(ψ) P(Y = 1) = ψ P(Y = 0) = 1 − ψ Probability mass function pY (y) = ψy(1
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    the features by hand (at least in the pre deep learning era). Techniques like Principal Components Analysis, Low-Rank Matrix Factorization, etc. are popular tools for dimensionality reduction. We will explain known as the Skipgram task. In the CBOW task, taking the sentence “the quick brown fox jumps over the lazy dog”, we can mask the word “jumps” and let the neural network predict the word it thinks fits in the regular convolutions and depthwise separable convolutions respectively. It will be followed by an analysis of their performance on key metrics. The code is below, but the entire Jupyter notebook is here
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    "} ) eval_data_path: str = field( default=None, metadata={"help": "Path to the evaluation data."} ) lazy_preprocess: bool = False @dataclass class TrainingArguments(transformers.TrainingArguments): cache_dir: __init__() self.tokenizer = tokenizer self.max_len = max_len rank0_print("Formatting inputs...Skip in lazy mode") self.tokenizer = tokenizer self.raw_data = raw_data self.cached_data_dict = {} def __len__(self): dataset and collator for supervised fine-tuning.""" dataset_cls = ( LazySupervisedDataset if data_args.lazy_preprocess else SupervisedDataset ) (续下页) 1.12. 有监督微调 31 Qwen (接上页) rank0_print("Loading data
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 深度学习下的图像视频处理技术-沈小勇

    skip connections Decoder Details from multi-frames Analysis 52 3 identical frames Output (identical) Details from multi-frames Analysis 53 3 consecutive frames Output (consecutive) Output Layer v.s. Baseline Analysis 54 Output (baseline) ????????????????????????→0 BW Resize Backward warping + Resize (baseline) Ablation Study: SPMC Layer v.s. Baseline Analysis 55 Output (SPMC) deconv 86 Data from GOPRO dataset Using Different Number of Scales Analysis 87 1 scale Input 2 scales 3 scales Baseline Models Analysis 88 Model SS SC w/o R RNN SR-Flat Param 2.73M 8.19M 2.73M 3.03M
    0 码力 | 121 页 | 37.75 MB | 1 年前
    3
  • pdf文档 keras tutorial

    which makes deep learning a very powerful tool. Deep learning algorithms are also useful for the analysis of unstructured data. Let us go through the basics of deep learning in this chapter. Artificial floatx() 'float32' Let us understand some of the significant backend functions used for data analysis in brief: get_uid() It is the identifier for the default graph. It is defined below: >>> It is used to convert positive into dense vectors of fixed size. Its main application is in text analysis. The signature of the Embedding layer function and its arguments with default value is as follows
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    regression, logistic re- gression, regularization, Gaussian discriminant analysis, Naive Bayes, EM algorithm, SVM, K-means, factor analysis, PCA, neural networks etc. 68 hours (4 hours/week × 17 weeks) Labs Personalized tutoring Discover new knowledge from large databases (data mining) Market basket analysis (e.g. diapers and beer) Medical information mining (e.g. migraines to calcium channel blockers to these with fewer ones, without loss of information. On simple way is to use PCA (Principal Component Analysis) Suppose that all data are in a space, we first find the direction of high- est variance of these
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    features and enhancements. ‣ PyTorch container image version 22.09 is based on 1.13.0a0+d0d6b1f. ‣ CUDA lazy module loading is on by default. To disable it, use unset CUDA_MODULE_LOADING or set it to EAGER. PyTorch container image version 22.08 is based on 1.13.0a0+d321be6. ‣ CUDA Module loading is set to LAZY starting with the 22.08 container. To enable the default eager loading behavior, use `export CUDA 12.0a0+8a1a93a. ‣ CUDA 11.7 introduces lazy module loading, which can save memory usage in your application. To enable it, use export CUDA_MODULE_LOADING="LAZY". Announcements ‣ NVIDIA Deep Learning
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    sentiments of the original and the transformed sentences are consistent. This can be used for sentiment analysis. This transformation has two main implications. First, it augments our dataset with additional examples that the agreement between the text and the original label is intact. In the context of sentiment analysis, the transformation must preserve the original sentiment of the text. For a language translation augmentations. It provides a simple 5 Maas, Andrew, et al. "Learning word vectors for sentiment analysis." Proceedings of the 49th annual meeting of the association for computational linguistics: Human
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 亚马逊AWSAI Services Overview

    estate purchase predictions FINRA • Anomaly detection, sequence matching, regression analysis, network/tribe analysis Netflix • Recommendation engine Pinterest • Image recognition search Fraud.net •
    0 码力 | 56 页 | 4.97 MB | 1 年前
    3
共 21 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
LectureNotesonGaussianDiscriminantAnalysisNaiveBayesEfficientDeepLearningBookEDLChapterArchitecturesAI模型千问qwen中文文档深度学习图像视频处理技术沈小勇kerastutorialOverviewPyTorchReleaseTechniques亚马亚马逊AWSAIServices
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩