积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(11)机器学习(11)

语言

全部英语(8)中文(简体)(3)

格式

全部PDF文档 PDF(11)
 
本次搜索耗时 0.025 秒,为您找到相关结果约 11 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lecture 6: Support Vector Machine

    SVM: A Primal Form 2 Convex Optimization Review 3 The Lagrange Dual Problem of SVM 4 SVM with Kernels 5 Soft-Margin SVM 6 Sequential Minimal Optimization (SMO) Algorithm Feng Li (SDU) SVM December models (e.g., linear regression, linear SVM etc.) cannot reflect the nonlinear pattern in the data Kernels: Make linear model work in nonlinear settings By mapping data to higher dimensions where it exhibits very high dimensional space) Using the mapped representation could be inefficient too Thankfully, kernels help us avoid both these issues! The mapping does not have to be explicitly computed Computations
    0 码力 | 82 页 | 773.97 KB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    feature space is of considerable overhead). Fortunately, the concept of kernels helps us avoid all these issues! With the help of kernels, the mapping does not have to be explicitly computed, and computations + K2(x, z) • Scalar product: K(x, z) = αK1(x, z) • Direct product: K(x, z) = K1(x, z)K2(x, z) Kernels can be constructed by composing these rules. In SVM, Mercer’s condition can be translated to another K is positive semi-definite, K(·, ·) is a valid kernel function. Follows are some commonly used kernels: • Linear (trivial) Kernal: K(x, z) = xT z • Quadratic Kernel K(x, z) = (xT z)2 or (1 + xT z)2
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    convolutional layer which receives a 3-channel input. Each individual 3x3 matrix is a kernel. A column of 3 kernels represents a channel. As you might notice, with such structured sparsity we can obtain efficient drop unnecessary computation. In the case of this convolutional layer, we can drop rows, columns, kernels, and even whole channels. Libraries like XNNPACK3,4 can help accelerate networks on a variety of Tensorflow and PyTorch is pending as of the time of writing this book. Mainly what is lacking is kernels that can efficiently leverage the compressed weight matrices on hardware so that you can actually
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    regressions in 21.09 vs. 21.07: ‣ Up to 20% performance drop for Tacotron inference due to missing fused kernels in the scripted model. PyTorch RN-08516-001_v23.07 | 174 Chapter 27. PyTorch Release 21.08 regressions in 21.08 vs. 21.07: ‣ Up to 20% performance drop for Tacotron inference due to missing fused kernels in the scripted model. PyTorch RN-08516-001_v23.07 | 180 Chapter 28. PyTorch Release 21.07 Release 19.05 PyTorch RN-08516-001_v23.07 | 314 Known Issues ‣ Persistent batch normalization kernels are enabled by default in this build. This will provide a performance boost to many networks, but
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    input channels. Figure 4-20 demonstrates a regular convolution operation over this input using n kernels of dimensions (dk, dk, m) where dk is the spatial dimension of each kernel. The regular convolution performs two step convolution. In the first step, the input is convolved with m (dk, dk, 1) shaped kernels. The i-th channel of the input is convolved with the i-th kernel. It involves h x w x m x dk x dk m) shaped output. The second step performs a pointwise convolution using n (1, 1, m) dimensional kernels. It requires h x w x m x n operations. Hence, the total number of operations are h x w x m x (dk
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 38. 卷积神经网络

    卷积神经网络 主讲人:龙良曲 Convolution Moving window Several kernels Animation https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural- networks-260c2de0a050 Notation Input_channels: Kernel_channels: Kernel_channels: 2 ch Kernel_size: Stride: Padding: Multi-Kernels https://skymind.ai/wiki/convolutional-network x: [b, 3, 28, 28] one k: [3, 3, 3] multi-k: [16, 3, 3, 3] bias: [16] out: [b, 16
    0 码力 | 14 页 | 1.14 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野

    dom_kernels_and_connections.tif https://commons.wikimedia.org/wiki/Category:Machine_learning_algorithms#/media/File:Moving_From_unknown_to_known_feature_spaces_based_on_TS-ELM_with_random_kernels_and_connections
    0 码力 | 64 页 | 13.45 MB | 1 年前
    3
  • pdf文档 深度学习下的图像视频处理技术-沈小勇

    Artifacts: ringing, noise, etc. Remaining Challenges 81 Data from [Mosleh et al, 2014] inaccurate kernels inaccurate models unstable solvers information loss Efficient Network Structure U-Net or encoder-decoder
    0 码力 | 121 页 | 37.75 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    a network. The number of dense units, number of convolution channels or the size of convolution kernels can sometimes be 4 Jaderberg, Max, et al. "Population based training of neural networks." arXiv
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    https://storage.googleapis.com/tensorflow/keras-applications/resnet/resnet50_weights_tf_dim _ordering_tf_kernels_notop.h5 94773248/94765736 [==============================] - 1s 0us/step 94781440/94765736 [=
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
LectureSupportVectorMachineNotesonEfficientDeepLearningBookEDLChapterAdvancedCompressionTechniquesPyTorchReleaseArchitectures深度学习入门实战38卷积神经网络神经网神经网络QCon北京2018键盘输入键盘输入彭博应用李碧野图像视频处理技术沈小勇Automation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩