积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(9)机器学习(9)

语言

全部英语(8)中文(简体)(1)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.055 秒,为您找到相关结果约 9 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    precision representation. The quantized sine wave is a low precision representation which takes integer values in the range [0, 5]. As a result, the quantized wave requires low transmission bandwidth. b-bit unsigned integer for storing x. A b-bit unsigned integer will have 2b possible distinct values, ranging from 0 to 2b - 1. To go from a 32-bit floating point value to a b-bit integer, and back again We have the <= in the low precision domain, because we are losing precision when going to a b-bit integer and as a result values which were close in the high precision domain might end up being mapped to
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    order of their frequencies, and assigns them an index. This process of mapping free form inputs to integer sequences is known as vectorization, as introduced in the Word2Vec subsection. The TextVectorization in accuracy. Hence, this is a trade-off. We also ensure that the tokenized input results in an integer sequence with exactly 250 tokens. This might mean padding short texts with padding tokens and truncating string is transformed into a sequence of integer ids. The maximum sequence length is 100. Therefore, for every input string, the embedding layer would receive 100 integer ids, and it would return a tensor of
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    工程优化: 千亿特征优化 模型蒸馏 AVX/SSE优化 Graph优化 [User Graph去重] 内存Allocate优化 ParallelStringOp [split/type conversion] Sequence Feature [side info] Op Fusion [hash + embedding] Overlap Execution [FG OP化] Item
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    – Data Type Data type dtype tensor 32-bit floating point torch.float torch.FloatTensor 64-bit integer (signed) torch.long torch.LongTensor see official documentation for more information on data types
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    of the quantization process: mapping of continuous high-precision values to discrete fixed-point integer values. Another example is Pruning (see Figure 1-9), where weights that are not important for the
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    CNNCell(): """ It composes a cell based on the input configuration. Arguments: stride: A positive integer to represent the convolution strides. Normal cells use stride=1 and reduction cells use stride=2
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    because they are both birds. 19 Typically, hard labels take float values as well. We have used integer values to improve readability. Distillation captures the relationship between classes which is not
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 keras tutorial

    activity_regularizer=None, kernel_constraint=None, bias_constraint=None) Here,  strides refer an integer specifying the strides of the convolution along the height and width. Pooling Layer It is used
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    _keras_history: 应用于张量的最后一层。整个网络层计算图可以递归地从该层中检索。 参数 • shape: 一个尺寸元组(整数),不包含批量大小。A shape tuple (integer), not including the batch size. 例如,shape=(32,) 表明期望的输入是按批次的 32 维向量。 • batch_shape: 一个尺寸元组(整数), int_shape(kvar) (2, 2) ndim keras.backend.ndim(x) 以整数形式返回张量中的轴数。 参数 • x: 张量或变量。 后端 BACKEND 182 返回 Integer (scalar), number of axes. 例子 >>> from keras import backend as K >>> inputs = K.placeholder(shape=(2
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
共 9 条
  • 1
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterCompressionTechniquesArchitectures阿里云上深度学习建模实践程孟力MachinePytorchTutorialIntroductionAutomationkerastutorialKeras基于Python
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩