积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(27)机器学习(27)

语言

全部英语(19)中文(简体)(8)

格式

全部PDF文档 PDF(27)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 27 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    technique depends on several factors like customer preference, consumption delay, or resource availability (extra hands needed for chopping). Personally, I like full apples. Let’s move on from apples some information, or do not necessarily care about the loss in quality. Figure 2-2: On the left is a high quality image of a cat. The cat on the right is a lower quality compressed image. Source Both the converting high precision continuous values to low precision discrete values. Take a look at figure 2-3. It shows a sine wave and an overlapped quantized sine wave. The sine wave is continuous, a high precision
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    predict the probability based on your behavior and currently trending content, the model will assign a high probability to Seinfeld. While there is no way of predicting with absolute certainty the exact content gradient (if any), and when there are a large number of layers the gradient essentially vanishes. Availability of labelled data Even if one has enough compute, and sophisticated algorithms, solving classical inference latency. Figure 1-8: An illustration of the quantization process: mapping of continuous high-precision values to discrete fixed-point integer values. Another example is Pruning (see Figure 1-9)
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    input numerically. It must fulfill the following goals: a) To compress the information content of high-dimensional concepts such as text, image, audio, video, etc. to a low-dimensional representation 1 Dimensionality reduction is the process of transforming high-dimensional data into low-dimension, while retaining the properties from the high-dimensional representation. It is useful because it is often 1.0. We manually picked these values for illustration. Going through table 4-1, cat and dog have high values for the ‘cute’ feature, and low values for the ‘dangerous’ feature. On the other hand, a snake
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    / 57 Example 2: Autonomous Driving-ALVINN A predecessor of Google car drives 70 mph on a public high- way 30x32 weights into one out of four hidden unit 30 outputs for steering 4 hidden units 30x32 57 Unsupervised Learning: Discovering Latent Factors Dimensionality reduction When dealing with high dimensional data, it is often useful to reduce the dimensionality by projecting the data to a lower the “essence” of the data. The motivation behind this technique is that although the data may appear high dimensional, there may only be a small number of degrees of variability, corresponding to latent factors
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    them communicate effectively with others who speak different languages. An application that employs a high quality model with a reasonable translation accuracy would garner better consumer support. In this this chapter, our focus will be on the techniques that enable us to achieve our quality goals. High quality models have an additional benefit in footprint constrained environments like mobile and edge devices distinct examples of objects (labels) you must show a child before they can learn to identify them with high accuracy. All cups have the same basic shape. One possible way to teach a child is to look at the
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    model for a new task: 1. Data Efficiency: It relies heavily on labeled data, and hence achieving a high performance on a new task requires a large number of labels. 2. Compute Efficiency: Training for this fine-tuning stage is not being used for learning rudimentary features, but rather how to map the high-level representations it learned in the pretraining stage to solving our new task. Thus, the number API10 to build their own applications. Given the large number of possible uses for such models, the high costs of pre-training get spread over the number of applications using it. Project: Using Pre-trained
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    feature space can be expensive (e.g., we have to store all the high-dimensional images of the data samples and computing inner products in the high-dimensional feature space is of considerable overhead). Fortunately help of kernels, the mapping does not have to be explicitly computed, and computations in the new high-dimensional feature space remains efficient. 9 (a) (b) Figure 5: Feature mapping for 2-dimensional • Sigmoid Kernel K(x, z) = tanh(αxT + c) Overall, kernel K(x, z) represents a dot product in some high-dimensional feature space F K(x, z) = (xT z)2 or (1 + xT z)2 Any learning algorithm in which data
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 Lecture 3: Logistic Regression

    for pos. examples, and negative for neg. examples) High positive score: High probability of label 1 High negative score: Low probability of label 1 (high prob. of label 0) Feng Li (SDU) Logistic Regression
    0 码力 | 29 页 | 660.51 KB | 1 年前
    3
  • pdf文档 Lecture 6: Support Vector Machine

    when the new space is very high dimensional Storing and using these mappings in later computations can be expensive (e.g., we may have to compute inner products in a very high dimensional space) Using the with the mapped features remain efficient Feng Li (SDU) SVM December 28, 2021 46 / 82 Kernels as High Dimensional Feature Mapping Let’s assume we are given a function K (kernel) that takes as inputs Kernels can turn a linear model into a nonlinear one Kernel K(x, z) represents a dot product in some high dimensional fea- ture space F K(x, z) = (xTz)2 or (1 + xTz)2 Any learning algorithm in which examples
    0 码力 | 82 页 | 773.97 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    hyperparameters and . The blue contours mark the positive results while the red ones indicate the trials with high losses. The density of trials is identical in both the regions which indicates that the search doesn't The next section dives into the search for neural architectures. Neural Architecture Search On a high level, Neural Architecture Search (NAS) is similar to Hyperparameter Search. In both cases, we search based on the performance of the child network which tunes it to search for cells that result in a high performance child network. NASNet has a much refined search space because it is predicting fewer overall
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
共 27 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterCompressionTechniquesIntroductionArchitecturesLectureOverviewAdvancedTechnicalReviewNotesonSupportVectorMachineLogisticRegressionAutomation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩