积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(8)机器学习(8)

语言

全部中文(简体)(5)英语(3)

格式

全部PDF文档 PDF(8)
 
本次搜索耗时 0.143 秒,为您找到相关结果约 8 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Keras: 基于 Python 的深度学习库

    3.8 fit_generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.3.9 evaluate_generator . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2.3.10 predict_generator . . . . 3.8 fit_generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.3.9 evaluate_generator . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3.3.10 predict_generator . . . . 进行批量训练 与测试。请参阅 模型文档。 或 者, 你 可 以 编 写 一 个 生 成 批 处 理 训 练 数 据 的 生 成 器, 然 后 使 用 model.fit_generator(data_generator,steps_per_epoch,epochs) 方法。 你可以在 CIFAR10 example 中找到实践代码。 3.3.10 在验证集的误差不再下降时,如何中断训练?
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    this purpose. A GAN is composed of two neural networks: a generator network and a discriminator network as shown in figure 3-15. The generator creates synthetic samples from random inputs (noise) and the the discriminator's job is to classify its inputs as real or fake. During the training phase, the generator tunes its outputs to look real to the discriminator. On the other hand, the discriminator learns department in a bank which detects fraudulent transactions. In the bank analogy, a fraudster is a generator who comes up with novel schemes to fool the fraud detection department, a discriminator, in order
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    GAN 的网络结构和算法原理。 13.2 GAN 原理 现在我们来正式介绍生成对抗网络的网络结构和训练方法。 13.2.1 网络结构 生成对抗网络包含了两个子网络:生成网络(Generator,简称 G)和判别网络 (Discriminator,简称 D),其中生成网络 G 负责学习样本的真实分布,判别网络 D 负责将 生成网络采样的样本与真实样本区分开来。 生成网络G(?) transforms.ToTensor(), ② 数据集整理自 https://github.com/chenyuntc/pytorch-book Generator P(z) 预览版202112 13.3 DCGAN 实战 7 transforms.Normalize((0 的彩色图片。每个卷积层中间插入 BN 层来提高训练稳定性,卷积层选择不使 用偏置向量。生成器的类代码实现如下: class Generator(nn.Module): # 生成器网络 def __init__(self, nz): super(Generator, self).__init__() filter = 64 # 转置卷积层
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》2-快速上手篇:动⼿训练模型和部署服务

    data.Dataset 加载数据 使用 tf.data.Dataset.from_tensor_slices 加载 List 使用 tf.data.Dataset.from_generator 加载 Generator 使用 tf.data.TextLineDataset 加载文本 “Hello TensorFlow” Try it! 使用 tf.keras.Model 管理模型 历史上的
    0 码力 | 52 页 | 7.99 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    dequantized weights. How different are the two outputs? Solution: We will start with the random number generator with a fixed seed to get consistent results across multiple runs. Next, we will create an input OPTIMIZE_FOR_SIZE, tf.lite.Optimize.OPTIMIZE_FOR_LATENCY] # Set up the representative dataset (using a generator function) that # helps improve the quality of the quantized model. def representative_dataset():
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 56. 深度学习:GAN

    paint After learned by 5 years After learned by 10 years Finally Put it down ▪ Painter or Generator: ▪ Critic or Discriminator https://towardsdatascience.com/generative-adversarial-networks-explained-
    0 码力 | 42 页 | 5.36 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-15深度学习-GAN

    GAN的理论与实现模型 GAN的基本原理 GAN的学习方法 GAN的衍生模型 2. GAN的理论与实现模型 13 GAN 的核心思想来源于博弈论的纳什均衡。 它设定参与游戏双方分别为一个生成器 (Generator) 和一个判别器(Discriminator),生成器的目的是尽 量去学习真实的数据分布,而判别器的目的是尽量 正确判别输入数据是来自真实数据还是来自生成器; 为了取得游戏胜利,这两个游戏参与者需要不断优
    0 码力 | 35 页 | 1.55 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    例如,我们可以在索引1、2和3中绘制10个随机变量X,采样概率为P(X = 1) = 2/9, P(X = 2) = 3/9和P(X = 3) = 4/9,如下所示。 #@save generator = RandomGenerator([2, 3, 4]) [generator.draw() for _ in range(10)] [1, 2, 2, 3, 3, 3, 3, 2, 1, 2] 对于一对中心词和上下文词,我 len(vocab))] all_negatives, generator = [], RandomGenerator(sampling_weights) for contexts in all_contexts: negatives = [] while len(negatives) < len(contexts) * K: neg = generator.draw() # 噪声词不能是上下文词
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
共 8 条
  • 1
前往
页
相关搜索词
Keras基于Python深度学习EfficientDeepLearningBookEDLChapterTechniquesPyTorch深度学习TensorFlow快速入门实战上手训练模型部署服务Compression56GAN机器课程温州大学15动手v2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩