积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(14)机器学习(14)

语言

全部英语(10)中文(简体)(4)

格式

全部PDF文档 PDF(14)
 
本次搜索耗时 0.062 秒,为您找到相关结果约 14 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    assign unique strings of bits (codes) to the symbols based on their frequency in the data. More frequent symbols are assigned smaller codes, and less frequent symbols are assigned longer codes. This is achieved it. This allows us to encode the given data in as few bits as possible, since the most frequent symbols will take the least number of bits to represent. In aggregate, this would be better than encoding Source When decoding the encoded data, we look up the code from the lookup table to retrieve the symbols back. Since the codes are unique for each symbol (in fact, they are prefix codes: no code is a prefix
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    sparsity, total = get_conv_block_sparsity(block) print('Block: {} Sparsity: {}% Total Weights: {}'.format(block.name, sparsity, total)) Output Block: conv_block_0 Sparsity: 0.0% Total Weights: 864 Block: up with a variable-length code, where a smaller length code is assigned to frequently occurring symbols such that the total number of bits required to encode a typical message can be minimized. Let’s model seems to have trained to a reasonable accuracy. We can now persist it to disk in the SavedModel format. import tempfile _, keras_file = tempfile.mkstemp('.h5') print('Saving model to: ', keras_file)
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    在下 面,我们将说明字节对编码是如何工作的。 首先,我们将符号词表初始化为所有英文小写字符、特殊的词尾符号'_'和特殊的未知符号'[UNK]'。 import collections symbols = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's' items(): symbols = token.split() for i in range(len(symbols) - 1): # “pairs”的键是两个连续符号的元组 (continues on next page) 14.6. 子词嵌入 675 (continued from previous page) pairs[symbols[i], symbols[i + 1]] += get) # 具有最大值的“pairs”键 作为基于连续符号频率的贪心方法,字节对编码将使用以下merge_symbols函数来合并最频繁的连续符号对 以产生新符号。 def merge_symbols(max_freq_pair, token_freqs, symbols): symbols.append(''.join(max_freq_pair)) new_token_freqs = dict()
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 Experiment 2: Logistic Regression and Newton's Method

    into your x matrix. Before beginning Newton’s Method, we will first plot the data using different symbols to represent the two classes. In Matlab/Octave, you can separate the positive class and the negative
    0 码力 | 4 页 | 196.41 KB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    /tmp/.keras/ 作为备份。 Keras 配置文件是存储在 $HOME/.keras/keras.json 中的 JSON 文件。默认的配置文件如 下所示: { "image_data_format": "channels_last", "epsilon": 1e-07, "floatx": "float32", "backend": "tensorflow" } 它包含以下字段: Conv2D [source] keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer='glorot_uniform' 当使用该层作为模型第一层时,需要提供 input_shape 参数(整数元组,不包含 样本表示的轴) ,例如,input_shape=(128, 128, 3) 表示 128x128 RGB 图像,在 data_format="channels_last" 时。 参数 • filters: 整数,输出空间的维度(即卷积中滤波器的输出数量)。 • kernel_size: 一个整数,或者 2 个整数表示的元组或列表,指明
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 keras tutorial

    { "image_data_format": "channels_last", "epsilon": 1e-07, "floatx": "float32", "backend": "tensorflow" } Here,  image_data_format represent the data format.  epsilon represents the backend = theano in keras.json file. It is described below: keras.json { "image_data_format": "channels_last", "epsilon": 1e-07, "floatx": "float32", "backend": "theano" } information as specified below: >>> k.backend() 'tensorflow' >>> k.epsilon() 1e-07 >>> k.image_data_format() 'channels_last' >>> k.floatx() 'float32' Let us understand some of the significant backend
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    chat(), we directly use model.generate() # But you need to use tokenizer.apply_chat_template() to format your inputs as shown␣ �→below prompt = "Give me a short introduction to large language model." messages chat(), we directly use model.generate() # But you need to use tokenizer.apply_chat_template() to format your inputs as shown␣ �→below prompt = "Give me a short introduction to large language model." messages model named Qwen..."} ] 然后只需通过一行代码运行校准过程: 1.8. GPTQ 17 Qwen import logging logging.basicConfig( format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO,␣ �→datefmt="%Y-%m-%d %H:%M:%S"
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    search_results.append(min_loss) fmt = 'Trial: {} learning_rate: {} layer_size: {} loss: {}' print(fmt.format(trial_id, learning_rate, layer_size, min_loss)) best_trial_id = np.argmin(search_results) best_loss min(search_results) print('\n=============== Search Summary ===============') print('Best Trial: {} Loss: {}'.format(best_trial_id, best_loss)) Trial: 0 learning_rate: 0.01 layer_size: 5 loss: 0.15629929304122925 reward, accuracy = child_manager.get_rewards(config) print( 'Episode: {} Reward: {} Accuracy: {}'.format( episode, reward, accuracy ) ) # Store predicted child and its rewards controller.save_trial(predictions
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    enhancements. ‣ PyTorch container image version 22.06 is based on 1.13.0a0+340c412. ‣ The TF32 numerical format is enabled by default for cuBLAS and cuDNN operations starting with the 22.06 release. If you encounter the PyTorch container does not build Caffe2 anymore. If scripted models were exported in the legacy format (using our 19.09 or previous NGC containers corresponding to PyTorch 1.2.0 or previous releases) and we recommend to disable cuDNN via torch.backends.cudnn.enabled = False. ‣ Channels-last memory format is experimental in the 20.07 container. Potential convergence issues for ResNet variants are being
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    them. When working with deep learning models and inputs such as text, which are not in numerical format, having an algorithmic way to meaningfully represent these inputs using a small number of numerical 'NaturalPlace', 'Village', 'Animal', 'Plant', 'Album', 'Film', 'WrittenWork'] The data is in CSV format with columns: class-id, title and description. The class id is 1-indexed, and the other two fields
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterCompressionTechniquesAdvanced动手深度学习v2ExperimentLogisticRegressionandNewtonMethodKeras基于PythonkerastutorialAI模型千问qwen中文文档AutomationPyTorchReleaseNotesArchitectures
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩