积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(19)机器学习(19)

语言

全部英语(10)中文(简体)(9)

格式

全部PDF文档 PDF(19)
 
本次搜索耗时 0.068 秒,为您找到相关结果约 19 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    SavedModel format. import tempfile _, keras_file = tempfile.mkstemp('.h5') print('Saving model to: ', keras_file) tf.keras.models.save_model(model_wm_10, keras_file, include_optimizer=False) Saving model el) _, clustered_keras_file = tempfile.mkstemp('.h5') print('Saving clustered model to: ', clustered_keras_file) tf.keras.models.save_model(final_model, clustered_keras_file, include_optimizer=False) clustered_tflite_file = '/tmp/clustered_speech.tflite' converter = tf.lite.TFLiteConverter.from_keras_model(final_model) tflite_clustered_model = converter.convert() with open(clustered_tflite_file, 'wb') as
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野

    media/File:Moving_From_unknown_to_known_feature_spaces_based_on_TS-ELM_with_random_kernels_and_connections.tif https://commons.wikimedia.org/wiki/Category:Machine_learning_algorithms#/media/File:Movin nd_connections.tif https://commons.wikimedia.org/wiki/Category:Machine_learning_algorithms#/media/File:OPTICS.svg May be re-distributed in accordance with the terms of the CC-SA 4.0 license https://creativecommons L.P. All rights reserved. Computer Vision Tasks Modified from https://commons.wikimedia.org/wiki/File:Cats_Petunia_and_Mimosa_2004.jpg May be re-distributed in accordance with the terms of the CC-SA 4
    0 码力 | 64 页 | 13.45 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    huggingface-cli(首先需要通过命令 pip install huggingface_hub 安装它): huggingface-cli download file> --local-dir --local-dir- �→use-symlinks False 比如: huggingface-cli download Qwen/Qwen1 slightly bad static_groups=False, sym=True, true_sequential=True, model_name_or_path=None, model_file_base_name="model" ) max_len = 8192 # Load your tokenizer and model with AutoGPTQ # To learn about modules for LoRA. By default we tune all linear layers; • lora_weight_path: the path to the weight file for LoRA; • lora_bias: the bias for LoRA; • q_lora: whether to use Q-LoRA. def maybe_zero_3(param):
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    normalize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 20.6 get_file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 20.7 print_summary io_utils 中的 HDF5Matrix 类。有关详细信息,请参阅 HDF5Matrix 文档。 你也可以直接使用 HDF5 数据集: import h5py with h5py.File('input/file.hdf5', 'r') as f: x_data = f['x_data'] model.predict(x_data) 快速开始 36 3.3.19 Keras 配置文件保存在哪里? 用于防止在某些操作中被零除的 epsilon 模糊因子。 • 默认浮点数据类型。 • 默认后端。详见 backend 文档。 同 样, 缓 存 的 数 据 集 文 件 (如 使 用 get_file() 下 载 的 文 件) 默 认 存 储 在 $HOME/.keras/datasets/ 中。 3.3.20 如何在 Keras 开发过程中获取可复现的结果? 在模型的开发过程中,能够在
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 keras tutorial

    the below command: pip install TensorFlow Once we execute keras, we could see the configuration file is located at your home directory inside and go to .keras/keras.json. keras.json { "image_data_format": or float64 using set_floatx() method.  backend denotes the current backend. Suppose, if the file is not created then move to the location and create using the below steps: > cd home > mkdir Remember, you should specify .keras as its folder name and add the above configuration inside keras.json file. We can perform some pre-defined operations to know backend functions. 3. Keras ― Backend Configuration
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    Prerequisites ● We assume you are already familiar with… 1. Python3 ■ if-else, loop, function, file IO, class, ... ■ refs: link1, link2, link3 2. Deep Learning Basics ■ Prof. Lee’s 1st & 2nd lecture expected values ● Dataloader: groups data in batches, enables multiprocessing ● dataset = MyDataset(file) ● dataloader = DataLoader(dataset, batch_size, shuffle=True) More info about batches and shuffling from torch.utils.data import Dataset, DataLoader class MyDataset(Dataset): def __init__(self, file): self.data = ... def __getitem__(self, index): return self.data[index] def
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    2 + ?3?3 + ⋯ + ???? + ? 上述计算逻辑可以通过图 2.2(b)直观地展现。 ① 素材来自 https://commons.wikimedia.org/wiki/File:Neuron_Hand-tuned.svg 预览版202112 第 2 章 回归问题 2 ?1 ?2 ?3 ?? ?? ? ? ?1 tensorflow import keras import pandas as pd # 在线下载汽车效能数据集 dataset_path = keras.utils.get_file("auto-mpg.data", "http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto- mpg.data") 可以通过如下可视化代码绘制数据集的分布,如图 7.14 所示。 # 绘制数据集的分布,X 为 2D 坐标,y 为数据点的标签 def make_plot(X, y, plot_name, file_name=None, XX=None, YY=None, preds=None, dark=False): if (dark): plt.style.use('dark_background')
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    os os.makedirs(os.path.join('..', 'data'), exist_ok=True) data_file = os.path.join('..', 'data', 'house_tiny.csv') with open(data_file, 'w') as f: f.write('NumRooms,Alley,Price\n') # 列名 f.write('NA 如果没有安装pandas,只需取消对以下行的注释来安装pandas # !pip install pandas import pandas as pd data = pd.read_csv(data_file) print(data) NumRooms Alley Price 0 NaN Pave 127500 1 2.0 NaN 106000 2 4.0 NaN 178100 3 NaN 'Uniform', 'VonMises', 'Weibull', 'Wishart', '__all__', '__ �→builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', �→ '__spec__', 'bernoulli', 'beta', 'biject_to'
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 Experiment 1: Linear Regression

    simple case where n = 1. Download data1.zip, and extract the files (ex1x.dat and ex1y.dat) from the zip file. The files contain some example measurements of heights for various boys between the ages of two and mul- tiple features. Download data1.zip, and extract the files (ex2x.dat and ex2y.dat) from the zip file. This is a training set of housing prices in Portland, Oregon, where the outputs y’s are the prices
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    The tflite_model_eval() function starts by creating a tflite interpreter, which consumes the model file content. The model_content variable holds the contents of the model that we created earlier. Then of TFLiteConverter. A call to the convert() method on the converter object generates a tflite model file content string. We referred to this string as model_content earlier. The converter object also supports
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
共 19 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterAdvancedCompressionTechniquesQCon北京2018键盘输入键盘输入神经网络神经网神经网络深度学习彭博应用李碧野AI模型千问qwen中文文档Keras基于PythonkerastutorialMachinePytorchTutorialPyTorch深度学习动手v2ExperimentLinearRegression
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩