积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(37)机器学习(37)

语言

全部英语(22)中文(简体)(15)

格式

全部PDF文档 PDF(37)
 
本次搜索耗时 0.056 秒,为您找到相关结果约 37 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lecture Notes on Gaussian Discriminant Analysis, Naive

    P(B) (1) where P(A | B) is the conditional probability of event A given event B happens, P(B | A) is the conditional probability of event B given A is true, and P(A) and P(B) are probability of observing count(i)(t) = �ni j=1 1(x(i) j = t) is the number of features in x(i) whose values are t (i.e., how many time t occurs in x(i) ). By now, we formulate our NB model for multinomial distribution as follows max
    0 码力 | 19 页 | 238.80 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    model, input data and the hyperparameter trial set is ready. Let's go ahead and train the model, each time choosing one item from the trial set. Each model is trained for 2000 iterations. At the end of a trial on the hyperparameters for the final training. For large models, this is very expensive in terms of time and resources. Alternatively, we can base the search approach on the budget allocation to cap the 24s] val_accuracy: 0.6313725709915161 Best val_accuracy So Far: 0.7284313440322876 Total elapsed time: 00h 17m 23s Results summary Results in hpo/hyperband Showing 3 best trials Trial summary Hyperparameters:
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    similar to the baseline, but does so in fewer epochs. We could ideally save an epoch’s worth of training time by terminating the training early, if we adopt this hypothetical sample efficient model training. effective utilization of the training data. Labeling data is often an expensive process both in terms of time consumption and fiscal expenditure because it involves human labelers looking at each example and the four classes, three of which are the keywords that the device will accept: hello, weather and time. The fourth class (none) indicates the absence of an acceptable keyword in the input signal. Figure
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 超大规模深度学习在美团的应用-余建平

    不重不丢:重复的数据会使模型有偏,数据的缺失 会使模型丢失重要信息  数据有序性:数据乱序会导致样本穿越的现象 • Log Join框架  双流拼接框架,通过组合方式支持多流拼接  基于Event Time的Window机制拼接方式  基于Low Watermark解决流乱序、流延迟等流式常 见问题 流式拼接框架 • Low Watermark机制  定义了流式数据的时钟,不可逆性
    0 码力 | 41 页 | 5.96 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    tested against each NGC monthly container release to ensure consistent accuracy and performance over time. ‣ ResNeXt101-32x4d model: This model was introduced in the Aggregated Residual Transformations for leverages mixed precision arithmetic by using Tensor Cores on NVIDIA V100 GPUs for 1.3x faster training time while maintaining target accuracy. This model script is available on GitHub and NGC. ‣ Tacotron tested against each NGC monthly container release to ensure consistent accuracy and performance over time. ‣ ResNeXt101-32x4d model: This model was introduced in the Aggregated Residual Transformations for
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    (conceptual or physical) random experiment Event A is a subset of the sample space S P(A) is the probability that event A happens It is a function that maps the event A onto the interval [0, 1]. P(A) is also also called the probability measure of A Kolmogorov axioms Non-negativity: p(A) ≥ 0 for each event A P(S) = 1 σ-additivity: For disjoint events {Ai}i such that Ai � Aj = ∅ for ∀i ̸= j P( ∞ � i=1 Ai) Conditional Probability Definition of conditional probability: Fraction of worlds in which event A is true given event B is true P(A | B) = P(A, B) P(B) , P(A, B) = P(A | B)P(B) Corollary: The chain rule
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    import math import os import random import re import shutil import sys import tarfile import time import zipfile from collections import defaultdict import pandas as pd import requests from IPython 否有瑕疵。检查骰子的唯一方法是多 次投掷并记录结果。对于每个骰子,我们将观察到{1, . . . , 6}中的一个值。对于每个值,一种自然的方法是将 它出现的次数除以投掷的总次数,即此事件(event)概率的估计值。大数定律(law of large numbers)告 诉我们:随着投掷次数的增加,这个估计值会越来越接近真实的潜在概率。让我们用代码试一试! 首先,我们导入必要的软件包。 74 在处理骰子掷出时,我们将集合S = {1, 2, 3, 4, 5, 6} 称为样本空间(sample space)或结果空间(outcome space),其中每个元素都是结果(outcome)。事件(event)是一组给定样本空间的随机结果。例如,“看 到5”({5})和“看到奇数”({1, 3, 5})都是掷出骰子的有效事件。注意,如果一个随机实验的结果在A中,则 事件A已经发生。也就是说,如果投掷出3点,因为3
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03机器学习-逻辑回归

    而分类预测结果需要得到[0,1]的概率值。 在二分类模型中,事件的几率odds:事件发生与事件不发生的概率之比为 ? 1−?, 称为事件的发生比(the odds of experiencing an event) 其中?为随机事件发生的概率,?的范围为[0,1]。 取对数得到:log ? 1−?,而log ? 1−? = ?T? = ? 求解得到:? = 1 1+?−?T? = 1
    0 码力 | 23 页 | 1.20 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》4-实战TensorFlow房价预测

    模块。其主要功能是获取和输出模型相关的 序列化数据,它贯通 TensorBoard 的整个使用流程。 tf.summary 模块的核心部分由一组汇总操作以及 FileWriter、Summary 和 Event 3个类组成。 可视化数据流图 工作流 创建 数据流图 创建 FileWriter 实例 启动 TensorBoard Which one is better? VS ✅
    0 码力 | 46 页 | 5.71 MB | 1 年前
    3
  • pdf文档 TensorFlow on Yarn:深度学习遇上大数据

    TensorFlow on Yarn设计 TensorFlow作业Tensorboard页面:� TensorFlow on Yarn设计 TensorFlow作业history页面:� Event log上传到了HDFS� 查看历史日志� TensorFlow on Yarn技术细节揭秘 实现Yarn Application的标准流程:� TensorFlow on Yarn技术细节揭秘
    0 码力 | 32 页 | 4.06 MB | 1 年前
    3
共 37 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
LectureNotesonGaussianDiscriminantAnalysisNaiveEfficientDeepLearningBookEDLChapterAutomationTechniques超大大规规模大规模超大规模深度学习美团应用建平PyTorchReleaseBayes动手v2机器课程温州大学03逻辑回归TensorFlow快速入门实战房价预测Yarn遇上数据
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩