积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(17)机器学习(17)

语言

全部英语(10)中文(简体)(7)

格式

全部PDF文档 PDF(17)
 
本次搜索耗时 0.027 秒,为您找到相关结果约 17 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    vector.set_shape((None, MAX_SEQ_LEN, WORD2VEC_LEN)) return vector, label Notice that in the 2nd for loop above, we limit the representation to the first MAX_SEQ_LEN words in the sequence. We are ready to similar to typical human behavior when making a big decision (a big purchase or an important life event). We discuss with friends and family to decide whether it is a good decision. We rely on their perspectives
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    ” ) train_loop ( train_dataloader , model , loss_function , optimizer ) test_loop ( test_dataloader , model , loss_function ) print ( ”Done ! ” ) 然后就是训练和测试的程序,训练一轮的程序如下: def train_loop ( dataloader 个数据。因为每个 batch 个 数为 64 个数据,因此训练集要训练 938 次,我们每 100 次输出一下。 测试集的程序如下: Chapter 2. 构建神经网络 13 def test_loop ( dataloader , model , loss_function ) : s i z e = len ( dataloader . dataset ) # 10000 print ( ”Epoch␣{ t+1}\n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” ) path = ’ ./ model ’ + s t r ( t ) +’ . pth ’ train_loop ( train_dataloader , model , loss_function , optimizer ) state = { ’ model ’ : model . state_dict
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    Save/load models Prerequisites ● We assume you are already familiar with… 1. Python3 ■ if-else, loop, function, file IO, class, ... ■ refs: link1, link2, link3 2. Deep Learning Basics ■ Prof. Lee’s construct model and move to device (cpu/cuda) set loss function set optimizer Neural Network Training Loop for epoch in range(n_epochs): model.train() for x, y in tr_set: optimizer.zero_grad() compute loss compute gradient (backpropagation) update model with optimizer Neural Network Validation Loop model.eval() total_loss = 0 for x, y in dv_set: x, y = x.to(device), y.to(device) with
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 Experiment 6: K-Means

    take between 30 and 100 iterations. You can either run the loop for a preset maximum number of iterations, or you can decide to terminate the loop when the locations of the means are no longer changing by
    0 码力 | 3 页 | 605.46 KB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    with January 2020 updates ‣ Initial support for channel-last layout for convolutions ‣ Support for loop unrolling and vectorized loads and stores in TensorIterator ‣ Support for input activations with MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    (conceptual or physical) random experiment Event A is a subset of the sample space S P(A) is the probability that event A happens It is a function that maps the event A onto the interval [0, 1]. P(A) is also also called the probability measure of A Kolmogorov axioms Non-negativity: p(A) ≥ 0 for each event A P(S) = 1 σ-additivity: For disjoint events {Ai}i such that Ai � Aj = ∅ for ∀i ̸= j P( ∞ � i=1 Ai) Conditional Probability Definition of conditional probability: Fraction of worlds in which event A is true given event B is true P(A | B) = P(A, B) P(B) , P(A, B) = P(A | B)P(B) Corollary: The chain rule
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》1-基础理论篇:TensorFlow 2设计思想

    Experimental support Experimental support Supported planned post 2.0 Supported Custom training loop Experimental support Experimental support Support planned post 2.0 Support planned post
    0 码力 | 40 页 | 9.01 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Gaussian Discriminant Analysis, Naive

    P(B) (1) where P(A | B) is the conditional probability of event A given event B happens, P(B | A) is the conditional probability of event B given A is true, and P(A) and P(B) are probability of observing
    0 码力 | 19 页 | 238.80 KB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    we’d like to shuffle it or not. That’s it! • Our loader will behave like an iterator, so we can loop over it and fetch a different mini-batch every time. Dataloader (example) • Sample Code in Practice:
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    variable at a time. Although it is possible to work without it, you would have to introduce a for-loop either within the function, or outside it. This is crucial for deep learning applications which frequently
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
共 17 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterTechniques连接神经网络神经网神经网络实战pytorchMachinePytorchTutorialExperimentMeansPyTorchReleaseNotesLectureGaussianDiscriminantAnalysisNaiveBayesTensorFlow快速入门基础理论基础理论设计思想onCompression
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩