《Efficient Deep Learning Book》[EDL] Chapter 1 - Introductionexample, if you are deploying a model on devices where inference is constrained (such as mobile and embedded devices), or expensive (cloud servers), it might be worth paying attention to inference efficiency Having such a toolbox to make our models pareto-optimal has the following benefits: Sustainable Server-Side Scaling Training and deploying large deep learning models is costly. While training is a one-time inference can be run completely on the user’s device without the need to send the input data to the server-side. New Applications Efficiency would also enable applications that couldn’t have otherwise been0 码力 | 21 页 | 3.17 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturesrepresented on the y-axis. Refer to Figure 4-1 for the plot. Figure 4-1: A plot of animals being embedded in a two-dimensional space, using ‘cute’ and ‘dangerous’ as the features, based on Table 4-1. The int_sequences_input = tf.keras.Input(shape=(None,), dtype='int64') embedded_sequences = embedding_layer(int_sequences_input) x = tf.reduce_mean(embedded_sequences, axis=1) x = tf.keras.layers.Dense(512, activation='relu')(x) get_cnn_model(embedding_layer): int_sequences_input = tf.keras.Input(shape=(None,), dtype="int64") embedded_sequences = embedding_layer(int_sequences_input) # Run a convolutional layer on top of the sequences0 码力 | 53 页 | 3.92 MB | 1 年前3
机器学习课程-温州大学-Scikit-learnRFECV(estimator, scoring=“r2”) 封装式(Wrap- per),结合交叉验证的递归特征消除法,自动选择最优特征个数 fs.SelectFromModel(estimator) 嵌入式(Embedded),从 模型中自动选择特征,任何具有coef_或者 feature_importances_的 基模型都可以作为estimator参数传入 14 2.Scikit-learn主要用法 监督学习算法-回归0 码力 | 31 页 | 1.18 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniqueschannels. Libraries like XNNPACK3,4 can help accelerate networks on a variety of web, mobile, and embedded devices, provided the user can design networks that match their constraints. One might wonder what0 码力 | 34 页 | 3.18 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquesthe words “embeddings” and “vectors” interchangeably in the text. Embeddings is a term for vectors embedded in the vocabulary space such that related words lie close to each other. # Initialize a representation0 码力 | 56 页 | 18.93 MB | 1 年前3
Keras: 基于 Python 的深度学习库Input(shape=(100,), dtype='int32') embedded_question = Embedding(input_dim=10000, output_dim=256, input_length=100)(question_input) encoded_question = LSTM(256)(embedded_question) 快速开始 25 # 连接问题向量和图像向量:0 码力 | 257 页 | 1.19 MB | 1 年前3
AI大模型千问 qwen 中文文档install vllm 运行以下代码以构建 vllm 服务。此处我们以 Qwen1.5-7B-Chat 为例: python -m vllm.entrypoints.openai.api_server --model Qwen/Qwen1.5-7B-Chat 然后,您可以使用 create chat interface 来与 Qwen 进行交流: curl http://localhos 包中的 Python 客户端: from openai import OpenAI # Set OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" client = OpenAI( (续下页) safetensor.index.json │ │ ├── merges.txt │ │ ├── tokenizer_config.json │ │ └── vocab.json 随后你需要运行 python server.py 来启动你的网页服务。请点击进入 `http://localhost:7860/?__theme=dark` 然后享受使用 Qwen 的 Web UI 吧! 1.6.2 下一步 TGW0 码力 | 56 页 | 835.78 KB | 1 年前3
PyTorch Release Notes4.6.1 ‣ Jupyter Notebook 6.0.3 ‣ JupyterLab 2.3.2, including Jupyter-TensorBoard ‣ JupyterLab Server 1.0.6 ‣ Jupyter-TensorBoard Driver Requirements Release 22.08 is based on CUDA 11.7.1, which requires 4.6.1 ‣ Jupyter Notebook 6.0.3 ‣ JupyterLab 2.3.2, including Jupyter-TensorBoard ‣ JupyterLab Server 1.0.6 ‣ Jupyter-TensorBoard Driver Requirements Release 22.07 is based on CUDA 11.7 Update 1 Preview 4.6.1 ‣ Jupyter Notebook 6.0.3 ‣ JupyterLab 2.3.2, including Jupyter-TensorBoard ‣ JupyterLab Server 1.0.6 ‣ Jupyter-TensorBoard Driver Requirements Release 22.06 is based on CUDA 11.7 Update 1 Preview0 码力 | 365 页 | 2.94 MB | 1 年前3
微博在线机器学习和深度学习实践-黄波serving server server server worker Model Serving System Serving PS Traing PS Traing Model System Predict Score Sample Data worker worker worker 3 在线机器学习-参数服务器 serving serving serving server server server server server server worker worker worker PSscheduler PSserver PSserver PSserver PSagent PSagent zookeeper PSproxy PSproxy PSsubmit File System checkpoint Model Training System Model Status set/get Model delete Model Save Model Load HA Fault tolerance checkpoint Local HDFS Param Server System Model Serving System 3 在线机器学习-参数服务器 • 参数规模 • 支持百亿特征维度,千亿参数 • 模型版本 • 多模型多版本:多组实验并行执行,提高实验迭代效率0 码力 | 36 页 | 16.69 MB | 1 年前3
搜狗深度学习技术在广告推荐领域的应用查询特征 广告特征 匹配特征 线性模型 非线性模型 Data Feature Model 线上Server CTR预估 Rank Online 特征抽取 CTR预估涉及技术 CTR预估 数据 模型 平台 MPI XgBoost Parameter Server 线性(LR) 非线性(GBDT) 深度(DNN) 实时(FTRL) 特征 训练数据 融合模型 Feature Maker One Case ALL One Hot 特征 Final CTR Bidding Server OFFLINE ONLINE OneHot Float LR Model DNN Model Retriever Server CTR Table DNN Model Feature LR Model Feature 特 征 池0 码力 | 22 页 | 1.60 MB | 1 年前3
共 21 条
- 1
- 2
- 3













