积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(25)机器学习(25)

语言

全部英语(13)中文(简体)(12)

格式

全部PDF文档 PDF(25)
 
本次搜索耗时 0.061 秒,为您找到相关结果约 25 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    The method implemented in your system depends on the DGX OS version that you installed (for DGX systems), the NGC Cloud Image that was provided by a Cloud Service Provider, or the software that you installed 15 ‣ OpenMPI 4.1.4+ ‣ GDRCopy 2.3 ‣ TensorBoard 2.9.0 ‣ Nsight Compute 2023.1.1.4 ‣ Nsight Systems 2023.2.3.1001 ‣ NVIDIA TensorRT™ 8.6.1.6 ‣ Torch-TensorRT 1.5.0.dev0 ‣ NVIDIA DALI® 1.27.0 ‣ 15 ‣ OpenMPI 4.1.4+ ‣ GDRCopy 2.3 ‣ TensorBoard 2.9.0 ‣ Nsight Compute 2023.1.1.4 ‣ Nsight Systems 2023.2.3.1001 ‣ NVIDIA TensorRT™ 8.6.1.6 ‣ Torch-TensorRT 1.5.0.dev0 ‣ NVIDIA DALI® 1.26.0 ‣
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    sharing. However, quantization falls behind in case the data that we are quantizing is not uniformly distributed, i.e. the data is more likely to take values in a certain range than another equally sized range John Denker, and Sara Solla. "Optimal brain damage." Advances in neural information processing systems 2 (1989). As you can deduce, the parameter changes the influence of the previous value of momentum "Deconstructing lottery tickets: Zeros, signs, and the supermask." Advances in neural information processing systems 32 (2019). 10 Liu, Zhuang, et al. "Rethinking the value of network pruning." arXiv preprint arXiv:1810
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    Compressed Communication for Distributed Deep Learning: Survey and Quantitative Evaluation [ICLR2018]Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training Dense参数,每次 都⽤,快速收敛 Partitions for Memory-Efficient Recommendation Systems Twiiter [RecSys21] Model Size Reduction Using Frequency Based Double Hashing for Recommender Systems 9 千 万 key hash1(key) hash2(key) 千 万 业界⽅案:Double
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》1-TensorFlow初印象

    Google Brain Team, Building Intelligent Systems with Large Scale Deep Learning 1990s��������������� Jeff Dean, Google Brain Team, Building Intelligent Systems with Large Scale Deep Learning ������������������ Dean, Google Brain Team, Building Intelligent Systems with Large Scale Deep Learning ����� Google ��� Jeff Dean, Google Brain Team, Building Intelligent Systems with Large Scale Deep Learning TensorFlow • �� • �� • ... TensorFlow ����� DistBelief - Google ��������������� Jeff Dean, Large Scale Distributed Deep Networks, NIPS 2012 TensorFlow - Google ��������������� • ���������� • ����������� • ����������
    0 码力 | 34 页 | 35.16 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    Research Fellow, National University of Singapore, Singapore. Research Interests: Distributed Algorithms and Systems, Wireless Net- works, Mobile Computing, Internet of Things. Feng Li (SDU) Overview driver Feng Li (SDU) Overview September 6, 2023 11 / 57 Why Do We Need Machine Learning? Develop systems that are too difficult/expensive to construct manually because they require specific detailed skills skills or knowledge tuned to a specific task (knowledge engineering bottleneck) Develop systems that can automatically adapt and customize them- selves to individual users. Personalized news or mail filter
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    毋庸置疑,如果没有数据,那么数据科学毫无用武之地。每个数据集由一个个样本(example, sample)组成, 大多时候,它们遵循独立同分布(independently and identically distributed, i.i.d.)。样本有时也叫做数据点 (data point)或者数据实例(data instance),通常每个样本由一组称为特征(features,或协变量(covariates)) ,就会对图像中内容的推断造成极大的困难。 最重要的是,到目前为止我们默认数据都来自于某种分布,并且所有样本都是独立同分布的(independently and identically distributed,i.i.d.)。然而,大多数的数据并非如此。例如,文章中的单词是按顺序写的,如 果顺序被随机地重排,就很难理解文章原始的意思。同样,视频中的图像帧、对话中的音频信号以及网站上 的浏览行 write 94 ns UCSD Non‐Volatile Systems Lab 256MB memory ref. (remote CPU) 120 ns TinyMemBench on Broadwell E5‐2690v4 Intel Optane random read 305 ns UCSD Non‐Volatile Systems Lab Send 4KB over 100 Gbps
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    will be clamped to lie in this range. 2. Let us assume that the values of x will be uniformly distributed in this range. This means that all values of x are equally likely to lie in any part of the range 5 Hubara, Itay, et al. "Binarized neural networks." Advances in neural information processing systems 29 (2016). 4 Rastegari, Mohammad, et al. "Xnor-net: Imagenet classification using binary convolutional
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野

    %29.png https://upload.wikimedia.org/wikipedia/commons/1/18/1328102022_Document.png May be re-distributed in accordance with the terms of the CC-SA 4.0 license https://creativecommons.org/licenses/by-sa/4 https://commons.wikimedia.org/wiki/Category:Machine_learning_algorithms#/media/File:OPTICS.svg May be re-distributed in accordance with the terms of the CC-SA 4.0 license https://creativecommons.org/licenses/by-sa/4 Modified from https://commons.wikimedia.org/wiki/File:Cats_Petunia_and_Mimosa_2004.jpg May be re-distributed in accordance with the terms of the CC-SA 4.0 license https://creativecommons.org/licenses/by-sa/4
    0 码力 | 64 页 | 13.45 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    , "deepspeed", None) and int(os.environ.get("WORLD_SIZE", 1)) == 1 ): training_args.distributed_state.distributed_type = DistributedType.DEEPSPEED local_rank = training_args.local_rank device_map = 执行下列命令: DISTRIBUTED_ARGS=" --nproc_per_node $NPROC_PER_NODE \ --nnodes $NNODES \ --node_rank $NODE_RANK \ --master_addr $MASTER_ADDR \ --master_port $MASTER_PORT " torchrun $DISTRIBUTED_ARGS src/train_bash
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 Lecture 4: Regularization and Bayesian Statistics

    distribution parameter Given: m independent and identically distributed (i.i.d.) samples of the data D = {d(i)}i=1,··· ,m Independent and Identically Distributed Given θ, each sample is independent of all other
    0 码力 | 25 页 | 185.30 KB | 1 年前
    3
共 25 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
PyTorchReleaseNotesEfficientDeepLearningBookEDLChapterAdvancedCompressionTechniques推荐模型基础特点大规规模大规模深度学习系统设计TensorFlow快速入门实战印象LectureOverview动手v2QCon北京2018键盘输入键盘输入神经网络神经网神经网络彭博应用李碧野AI千问qwen中文文档RegularizationandBayesianStatistics
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩