积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(25)机器学习(25)

语言

全部中文(简体)(15)英语(10)

格式

全部PDF文档 PDF(25)
 
本次搜索耗时 0.060 秒,为您找到相关结果约 25 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 AI大模型千问 qwen 中文文档

    , "deepspeed", None) and int(os.environ.get("WORLD_SIZE", 1)) == 1 ): training_args.distributed_state.distributed_type = DistributedType.DEEPSPEED local_rank = training_args.local_rank device_map = 文件中的列应为: "dataset_name": { "file_name": "dataset_name.json", "columns": { "prompt": "instruction", "query": "input", "response": "output", "system": "system", "history": "history" } } • 对于 sharegpt 格式的数据集,dataset_info 执行下列命令: DISTRIBUTED_ARGS=" --nproc_per_node $NPROC_PER_NODE \ --nnodes $NNODES \ --node_rank $NODE_RANK \ --master_addr $MASTER_ADDR \ --master_port $MASTER_PORT " torchrun $DISTRIBUTED_ARGS src/train_bash
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 构建基于富媒体大数据的弹性深度学习计算平台

    用户数 据 推理结 果 推理服务 数据抽样 和整理 样本 训练 模型 模型评估 AVA深度学习平台 Caching IO Distributed System Docker Orchestration Storage HDFS SQL NoSQL Caffe MXNet Tensorflow Data Clean Iterative training Semi-supervised
    0 码力 | 21 页 | 1.71 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    - Nov 2015, Research Fellow, National University of Singapore, Singapore. Research Interests: Distributed Algorithms and Systems, Wireless Net- works, Mobile Computing, Internet of Things. Feng Li (SDU) teacher. “Near miss” examples Learner can query an oracle about class of an unlabeled example in the environment Learner can construct an arbitrary example and query an oracle for its label Learner can design Basic idea: Traditional supervised learning algorithms passively accept training data. Instead, query for annotations on informative images from the unlabeled data. Theoretical results show that large
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    毋庸置疑,如果没有数据,那么数据科学毫无用武之地。每个数据集由一个个样本(example, sample)组成, 大多时候,它们遵循独立同分布(independently and identically distributed, i.i.d.)。样本有时也叫做数据点 (data point)或者数据实例(data instance),通常每个样本由一组称为特征(features,或协变量(covariates)) 各种机器学习问题 25 办比赛14来完成这项工作。 搜索 有时,我们不仅仅希望输出一个类别或一个实值。在信息检索领域,我们希望对一组项目进行排序。以网络 搜索为例,目标不是简单的“查询(query)‐网页(page)”分类,而是在海量搜索结果中找到用户最需要的 那部分。搜索结果的排序也十分重要,学习算法需要输出有序的元素子集。换句话说,如果要求我们输出字 母表中的前5个字母,返回“A、 ,就会对图像中内容的推断造成极大的困难。 最重要的是,到目前为止我们默认数据都来自于某种分布,并且所有样本都是独立同分布的(independently and identically distributed,i.i.d.)。然而,大多数的数据并非如此。例如,文章中的单词是按顺序写的,如 果顺序被随机地重排,就很难理解文章原始的意思。同样,视频中的图像帧、对话中的音频信号以及网站上 的浏览行
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    取 pd.read_sql() | 从 SQL 表 或 数 据 库 读 取 pd.read_json() | 从JSON格式的URL或文件读取 pd.read_clipboard() | 从剪切板读取 将DataFrame写入⽂件 df.to_csv() | 写入CSV文件 df.to_excel() | 写入Excel文件 df.to_sql() | 写入SQL表或数据库 df.to_json()
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    取 pd.read_sql() | 从 SQL 表 或 数 据 库 读 取 pd.read_json() | 从JSON格式的URL或文件读取 pd.read_clipboard() | 从剪切板读取 将DataFrame写入⽂件 df.to_csv() | 写入CSV文件 df.to_excel() | 写入Excel文件 df.to_sql() | 写入SQL表或数据库 df.to_json()
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野

    %29.png https://upload.wikimedia.org/wikipedia/commons/1/18/1328102022_Document.png May be re-distributed in accordance with the terms of the CC-SA 4.0 license https://creativecommons.org/licenses/by-sa/4 https://commons.wikimedia.org/wiki/Category:Machine_learning_algorithms#/media/File:OPTICS.svg May be re-distributed in accordance with the terms of the CC-SA 4.0 license https://creativecommons.org/licenses/by-sa/4 Modified from https://commons.wikimedia.org/wiki/File:Cats_Petunia_and_Mimosa_2004.jpg May be re-distributed in accordance with the terms of the CC-SA 4.0 license https://creativecommons.org/licenses/by-sa/4
    0 码力 | 64 页 | 13.45 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    sharing. However, quantization falls behind in case the data that we are quantizing is not uniformly distributed, i.e. the data is more likely to take values in a certain range than another equally sized range In this scenario, the dequantization error would be large for ranges where the data is densely distributed. Quantization-aware training can mitigate some of the losses by making the network resilient to likelihood of . Can we do better such that we assign more bits to regions where more of our data is distributed, and fewer bits to the sparser regions? Recall that huffman encoding does this by trying to create
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    the experimental UCC process group for the distributed backend. Users can experiment with it by creating UCC as the default process group via: torch.distributed.init_process_group(backend="ucc", kwargs) or a side process group with any default via: torch.distributed.init_process_group(backend=any_backend, default_pg_kwargs) ucc_pg = torch.distributed.new_group(backend="ucc", ucc_pg_kwargs) Announcements 75224d4c48d7ca), all batch norm multiplier is initialized as constant 1, instead of uniformly distributed between 0 and 1, as it was previously. This has caused accuracy issue for our TACOTRON2 model.
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Lecture 4: Regularization and Bayesian Statistics

    distribution parameter Given: m independent and identically distributed (i.i.d.) samples of the data D = {d(i)}i=1,··· ,m Independent and Identically Distributed Given θ, each sample is independent of all other
    0 码力 | 25 页 | 185.30 KB | 1 年前
    3
共 25 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
AI模型千问qwen中文文档构建基于媒体数据弹性深度学习计算平台LectureOverview动手v2机器课程温州大学01引言QCon北京2018键盘输入键盘输入神经网络神经网神经网络彭博应用李碧野EfficientDeepLearningBookEDLChapterAdvancedCompressionTechniquesPyTorchReleaseNotesRegularizationandBayesianStatistics
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩