积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(22)机器学习(22)

语言

全部英语(15)中文(简体)(7)

格式

全部PDF文档 PDF(22)
 
本次搜索耗时 0.036 秒,为您找到相关结果约 22 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    anaconda prompt, this will open base Anaconda environment. Let us create a new conda environment. This process is similar to virtualenv. Type the below command in your conda terminal: conda create --name PythonCPU object. Here, the feature extraction process goes from the output of one layer into the input of the next subsequent layer. By using this approach, we can process huge amount of features, which makes information and then passes the result to another neuron and this process continues. This is the basic method used by our human brain to process huge about of information like speech, visual, etc., and extract
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    implementation details using code samples. We finish with a hands-on project that will walk you through the process of applying quantization in practical situations using popular frameworks like Tensorflow and Tensorflow has been used across different parts of Computer Science especially in signal processing. It is a process of converting high precision continuous values to low precision discrete values. Take a look at figure for going from this higher-precision domain (32-bits) to a quantized domain (b-bit values). This process is nothing but (cue drum roll!) ...Quantization! Before we get our hands dirty, let us first make
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    training process that enables the child to reach the same accuracy by seeing a smaller number of samples, that process would be sample efficient. Similarly, a sample efficient model training process requires to evaluate the effective utilization of the training data. Labeling data is often an expensive process both in terms of time consumption and fiscal expenditure because it involves human labelers looking light. The same process can be repeated for other objects. If the child learns to recognize these objects accurately with fewer numbers of distinct objects being shown, we have made this process more label
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    jump ahead if you are familiar with the motivation behind them. 1 Dimensionality reduction is the process of transforming high-dimensional data into low-dimension, while retaining the properties from the GloVe7) which can learn embeddings for word tokens for NLP tasks. The embedding table generation process is done without having any ground-truth labels, which is an example of self-supervised learning using train an embedding table in the process. We will start with creating a vocabulary of words in the first step. The second step assigns a unique index to the words. This process is called vectorization. An embedding
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    Jupyter Notebook VS Code • Install the Python extension. • ???????????? Install the Remote Development extension. • Python files can be run like Jupyter notebooks by delimiting cells/sections with
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别

    模型 训练 参数 调优 模型 部署 识别 服务 使用 Flask 快速搭建 验证码识别服务 使用 Flask 启动 验证码识别服务 $ export FLASK_ENV=development && flask run --host=0.0.0.0 打开浏览器访问测试 URL(http://localhost:5000/ping) 访问 验证码识别服务 $ curl -X POST
    0 码力 | 51 页 | 2.73 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    percentage of the smallest absolute valued weights in each training epoch. The result of such a training process is p% weights with zero values. Sparse compressed models achieve higher compression ratio which results Let's introduce the concept of saliency scores to abstract the pruning strategies from the pruning process. The saliency scores are the scores assigned to the weights (edges / nodes to be removed) to facilitate all try to approximate the importance of a given weight at a certain point of time in the training process to minimize the loss function. The better we can estimate this importance, the more accurately we
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    algorithm that works perfectly, and there is a large amount of unseen data that the algorithm needs to process. Unlike traditional algorithm problems where we expect exact optimal answers, machine learning applications primary aspects: Training Efficiency Training Efficiency involves benchmarking the model training process in terms of computation cost, memory cost, amount of training data, and the training latency. It while also speeding up the inference latency. Figure 1-8: An illustration of the quantization process: mapping of continuous high-precision values to discrete fixed-point integer values. Another example
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    take infinitely many values. In the context of deep learning, the parameters that influence the process of learning are called hyperparameters to differentiate them from model parameters. The performance Hence, we need a sophisticated approach to tune them. Hyperparameter Optimization (HPO) is the process of choosing values for hyperparameters that lead to an optimal model. HPO performs trials with different Hyperparameter Optimization Hyperparameter Optimization improves two aspects of the training process: performance and convergence. Hyperparameters like number of filters in a convolution network or
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    provides the experimental UCC process group for the distributed backend. Users can experiment with it by creating UCC as the default process group via: torch.distributed.init_process_group(backend="ucc", kwargs) kwargs) or a side process group with any default via: torch.distributed.init_process_group(backend=any_backend, default_pg_kwargs) ucc_pg = torch.distributed.new_group(backend="ucc", ucc_pg_kwargs) Announcements libsystemd and libudev versions that have a known vulnerability that was discovered late in our QA process. See CVE-2021-33910 for details. This will be fixed in the next release. PyTorch RN-08516-001_v23
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
共 22 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
kerastutorialEfficientDeepLearningBookEDLChapterCompressionTechniquesArchitecturesPyTorchTutorialTensorFlow快速入门实战验证验证码识别AdvancedIntroductionAutomationReleaseNotes
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩