 PyTorch TutorialPyTorch, a model is represented by a regular Python class that inherits from the Module class. • Two components • __init__(self): it defines the parts that make up the model —in our case, two parameters, a kind of a Python list of tuples, each tuple corresponding to one point (features, label) • 3 components: • __init__(self) • __get_item__(self, index) • __len__(self) • Unless the dataset is huge0 码力 | 38 页 | 4.09 MB | 1 年前3 PyTorch TutorialPyTorch, a model is represented by a regular Python class that inherits from the Module class. • Two components • __init__(self): it defines the parts that make up the model —in our case, two parameters, a kind of a Python list of tuples, each tuple corresponding to one point (features, label) • 3 components: • __init__(self) • __get_item__(self, index) • __len__(self) • Unless the dataset is huge0 码力 | 38 页 | 4.09 MB | 1 年前3
 机器学习课程-温州大学-Scikit-learndecomposition 模块包含了一系列无监督降维算法 from sklearn.decomposition import PCA 导入PCA库,设置主成分数量为3,n_components代表主成分数量 pca = PCA(n_components=3) 训练模型 pca.fit(X) 投影后各个特征维度的方差比例(这里是三个主成分) print(pca.explained_variance_ratio_)0 码力 | 31 页 | 1.18 MB | 1 年前3 机器学习课程-温州大学-Scikit-learndecomposition 模块包含了一系列无监督降维算法 from sklearn.decomposition import PCA 导入PCA库,设置主成分数量为3,n_components代表主成分数量 pca = PCA(n_components=3) 训练模型 pca.fit(X) 投影后各个特征维度的方差比例(这里是三个主成分) print(pca.explained_variance_ratio_)0 码力 | 31 页 | 1.18 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automationhuman designed models. However, the key contribution of NASNet was the focus on predicting the components of child networks which enabled the construction of multiscale networks without needing to tweak ), dict(name='combinations', values=['add', 'concat'], count=1), ] The STATE_SPACE has three components to mimic the NASNet search space. The hidden_state element can take two values to represent the0 码力 | 33 页 | 2.48 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automationhuman designed models. However, the key contribution of NASNet was the focus on predicting the components of child networks which enabled the construction of multiscale networks without needing to tweak ), dict(name='combinations', values=['add', 'concat'], count=1), ] The STATE_SPACE has three components to mimic the NASNet search space. The hidden_state element can take two values to represent the0 码力 | 33 页 | 2.48 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniquescompression, and the MP3 format for audio. DCT breaks down the given input data into independent components of which the ones that don’t contribute much to the original input can be discarded, based on the graph using the create_model() function. Then, it compiles the model by providing the necessary components the framework needs to train the model. This includes the loss function, the optimizer, and finally0 码力 | 33 页 | 1.96 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniquescompression, and the MP3 format for audio. DCT breaks down the given input data into independent components of which the ones that don’t contribute much to the original input can be discarded, based on the graph using the create_model() function. Then, it compiles the model by providing the necessary components the framework needs to train the model. This includes the loss function, the optimizer, and finally0 码力 | 33 页 | 1.96 MB | 1 年前3
 阿里云上深度学习建模实践-程孟力 跨场景+跨模态  开箱即用: 封装复杂性  白盒化, 可扩展性强  积极对接开源系统+模型 FTRL SGD Adam Solutions Librarys 优势: Components Framework EasyVision EasyRec GraphLearn EasyTransfer 标准化: Standard Libraries and Solutions0 码力 | 40 页 | 8.51 MB | 1 年前3 阿里云上深度学习建模实践-程孟力 跨场景+跨模态  开箱即用: 封装复杂性  白盒化, 可扩展性强  积极对接开源系统+模型 FTRL SGD Adam Solutions Librarys 优势: Components Framework EasyVision EasyRec GraphLearn EasyTransfer 标准化: Standard Libraries and Solutions0 码力 | 40 页 | 8.51 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introductioninference. Figure 1-17: Model Training & Inference stages, along with the constituent infrastructure components. Advances in hardware are significantly responsible for the deep learning revolution, specifically0 码力 | 21 页 | 3.17 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introductioninference. Figure 1-17: Model Training & Inference stages, along with the constituent infrastructure components. Advances in hardware are significantly responsible for the deep learning revolution, specifically0 码力 | 21 页 | 3.17 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturesconstruct the features by hand (at least in the pre deep learning era). Techniques like Principal Components Analysis, Low-Rank Matrix Factorization, etc. are popular tools for dimensionality reduction. We0 码力 | 53 页 | 3.92 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturesconstruct the features by hand (at least in the pre deep learning era). Techniques like Principal Components Analysis, Low-Rank Matrix Factorization, etc. are popular tools for dimensionality reduction. We0 码力 | 53 页 | 3.92 MB | 1 年前3
 keras tutorialnetworks. 1. Keras ― Introduction Keras 2  Deep learning models are discrete components, so that, you can combine into many ways. Keras 3 This chapter explains0 码力 | 98 页 | 1.57 MB | 1 年前3 keras tutorialnetworks. 1. Keras ― Introduction Keras 2  Deep learning models are discrete components, so that, you can combine into many ways. Keras 3 This chapter explains0 码力 | 98 页 | 1.57 MB | 1 年前3
 【PyTorch深度学习-龙龙老师】-测试版202112装 的程序组件。在 CUDA 节点下,取消”Visual Studio Integration”一项;在“Driver 预览版202112 1.6 开发环境安装 19 components”节点下,比对目前计算机已经安装的显卡驱动“Display Driver”的版本号 “Current Version”和 CUDA 自带的显卡驱动版本号“New Version”,如果“Current 。特征降维(Dimensionality Reduction)在 机器学习中有广泛的应用,比如文件压缩(Compression)、数据预处理(Preprocessing)等。最 常见的降维算法有主成分分析法(Principal components analysis,简称 PCA),通过对协方差 矩阵进行特征分解而得到数据的主要成分,但是 PCA 本质上是一种线性变换,提取高层特 征的能力极为有限。 那么能不能利用神经网络的强大非0 码力 | 439 页 | 29.91 MB | 1 年前3 【PyTorch深度学习-龙龙老师】-测试版202112装 的程序组件。在 CUDA 节点下,取消”Visual Studio Integration”一项;在“Driver 预览版202112 1.6 开发环境安装 19 components”节点下,比对目前计算机已经安装的显卡驱动“Display Driver”的版本号 “Current Version”和 CUDA 自带的显卡驱动版本号“New Version”,如果“Current 。特征降维(Dimensionality Reduction)在 机器学习中有广泛的应用,比如文件压缩(Compression)、数据预处理(Preprocessing)等。最 常见的降维算法有主成分分析法(Principal components analysis,简称 PCA),通过对协方差 矩阵进行特征分解而得到数据的主要成分,但是 PCA 本质上是一种线性变换,提取高层特 征的能力极为有限。 那么能不能利用神经网络的强大非0 码力 | 439 页 | 29.91 MB | 1 年前3
共 9 条
- 1













