积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(6)机器学习(6)

语言

全部英语(6)

格式

全部PDF文档 PDF(6)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 6 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    For more information, refer to the nvidia-docker documentation. Note: Starting in Docker 19.03, complete the steps below. The method implemented in your system depends on the DGX OS version that you installed 23.07 is available on NGC. Contents of the PyTorch container This container image contains the complete source of the version of PyTorch in /opt/ pytorch. It is prebuilt and installed in the default Python all R418, R440, R460, and R520 drivers, which are not forward- compatible with CUDA 12.1. For a complete list of supported drivers, see the CUDA Application Compatibility topic. For more information, see
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 keras tutorial

    below flow chart: Keras 16 Keras 17 Keras provides a complete framework to create any type of neural networks. Keras is innovative as well as very easy to learn information. The output of one layer will flow into the next layer as its input. Let us learn complete details about layers in this chapter. Introduction A Keras layer requires shape of the input during optimization process. To summarise, Keras layer requires below minimum details to create a complete layer.  Shape of the input data  Number of neurons / units in the layer  Initializers
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    hyperparameters values. Each trial is configured with an element from the trial set. After all the trials are complete, we pick the one with the best results. The trials are independent of each other which makes them batch(256) tuner.search(tds, validation_data=vds) tuner.results_summary(num_trials=3) Trial 30 Complete [00h 01m 24s] val_accuracy: 0.6313725709915161 Best val_accuracy So Far: 0.7284313440322876 Total
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 Lecture 2: Linear Regression

    f ′ i (x)ui (2) Let h = 0, then g′(0) = �n i=1 f ′ i (x)ui, by substituting which into (1), we complete the proof. Feng Li (SDU) Linear Regression September 13, 2023 12 / 31 Gradient (Contd.) Definition
    0 码力 | 31 页 | 608.38 KB | 1 年前
    3
  • pdf文档 Lecture 7: K-Means

    results in chaining (clusters can get very large) d(R, S) = min xR∈R,xS∈S d(xR, xS) Max-link or complete-link: results in small, round shaped clusters d(R, S) = max xR∈R,xS∈S d(xR, xS) Average-link:
    0 码力 | 46 页 | 9.78 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    encoder. Notice how we add a few dense layers after the output of the BERT model. This helps adapt the complete model and be fine-tuned on our task. def get_bert_model( encoder_size, learning_rate=2e-5,
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
共 6 条
  • 1
前往
页
相关搜索词
PyTorchReleaseNoteskerastutorialEfficientDeepLearningBookEDLChapterAutomationLectureLinearRegressionMeansAdvancedTechniquesTechnicalReview
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩