积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(10)机器学习(10)

语言

全部英语(9)中文(简体)(1)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.032 秒,为您找到相关结果约 10 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    without a noticeable impact on quality metrics. However, it is also possible to achieve latency improvements by pruning connections such that there is a certain structure to the sparsity. This helps hardware out of 4 contiguous values in a matrix are 0 (effectively 50% sparsity). The intermediate model compiler rewrites a standard matrix multiplication operation to be performed using a compressed representation hardware support for sparsity and many industrial and academic use cases reporting significant improvements, we feel that sparsity will be one of the leading compression techniques used for model efficiency
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    were the well-known algorithms designed for training deep networks. However, one of the critical improvements in the past decade was the ReLU activation function. ReLU2 allowed the gradients to back-propagate (GLUE) benchmark. Subsequently models like BERT4 and GPT5 models have demonstrated additional improvements on NLP-related tasks. BERT spawned several related model architectures optimizing its various has been focused on improving on the State of the Art, and as a result we have seen progressive improvements on benchmarks like image classification, text classification. Each new breakthrough in neural
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    have introduced the learning techniques as ideas to improve quality metrics and exchange those improvements to reduce footprint metrics. This was necessary to build an intuition of the real world problems validation accuracy of a model trained on the CIFAR-10 dataset. Figure 3-7: Validation Accuracy Improvements on the CIFAR-10 dataset for various transformations3. 3 Menghani, Gaurav. "Efficient Deep Learning: day. The final sentence has a positive sentiment as expected. Table 3-5 shows the performance improvements of various classification models that were trained with a mix of original and synthetic data generated
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    searched as well. transformation parameters in data augmentation layer contribute to performance improvements while others like learning rate, batch size or momentum are geared towards model convergence. Stopping can even be applied with the HyperBand to terminate the runs sooner if they do not show improvements for a number of epochs. The algorithms like HyperBand bring the field of HPO closer to the evolutionary
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    project This document provides information about the key features, software enhancements and improvements, known issues, and how to run this container. PyTorch RN-08516-001_v23.07 | 2 Chapter 2 optimization. Note that this layout is still in experimental form. See Known Issues below. ‣ Performance improvements for various torch.distribution methods by switching to the TensorIterator implementation ‣ Default on 1.5.0a0+8f84ded ‣ Latest version of DALI 0.19.0 ‣ Performance improvements for elementwise operations ‣ Performance improvements for per-channel quantization ‣ Relaxation of cudnn batchnorm input
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    important things: • torch.no_grad() • Don’t store the history of all computations • eval() • Tell compiler which mode to run on. Visualization • TensorboardX (visualise training) • PyTorchViz (visualise
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    FP16 / Int8  模型剪枝  Op融合(Fusion Stitch)  MILR: Blade Disc 工程优化: Blade模型推理 Dynamic Shape Compiler for Machine Learning Workloads EmbeddingVariable [No Hash Conflict] 特征准入/淘汰 Adaptive Embedding
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    architecture. Similarly the paper by He et al.15 demonstrates multiple percentage points of accuracy improvements in EfficientNet through various learning techniques. Let’s pause to think about the significance
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    to a real world deep learning model and demonstrate the size reduction and inference efficiency improvements. The project will use the famous MNIST dataset! Figure 2-10: Latency v/s accuracy trade off for
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    vocabulary and a bigger embedding table. Additionally at some point, increasing N would give miniscule improvements in accuracy. Hence, this is a trade-off. We also ensure that the tokenized input results in an
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
共 10 条
  • 1
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterAdvancedCompressionTechniquesIntroductionAutomationPyTorchReleaseNotesTutorial阿里云上深度学习建模实践程孟力TechnicalReviewArchitectures
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩