积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(20)机器学习(20)

语言

全部英语(16)中文(简体)(4)

格式

全部PDF文档 PDF(20)
 
本次搜索耗时 0.054 秒,为您找到相关结果约 20 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    to your project root directory and type the below command to create virtual environment, python3 -m venv kerasenv After executing the above command, “kerasenv” directory is created with bin,lib and Windows 2. Keras ― Installation Keras 4 Windows user can use the below command, py -m venv keras Step 2: Activate the environment This step will configure python and pip folder and type the below command, $ cd kerasvenv kerasvenv $ source bin/activate Windows Windows users move inside the “kerasenv” folder and type the below command, .\env\Scripts\activate
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    PyTorch also includes standard defined neural network layers, deep learning optimizers, data loading utilities, and multi-gpu, and multi-node support. Functions are executed immediately instead of enqueued in your Docker ® environment must support NVIDIA GPUs. To run a container, issue the appropriate command as explained in Running A Container and specify the registry, repository, and tags. About this task runtime resources of the container by including additional flags and settings that are used with the command. These flags and settings are described in Running A Container. ‣ The GPUs are explicitly defined
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Experiment 1: Linear Regression

    descent, we need to add the x0 = 1 intercept term to every example. To do this in Matlab/Octave, the command is m = length (y ) ; % st or e the number of t r a i n i n g examples x = [ ones (m, 1) , x ] ; iterations). After convergence, record the final values of θ0 and θ1 that you get, and plot the straight line fit from your algorithm on the same graph as your training data according to θ. The plotting commands between J and θ % Plot the surface p l o t % Because of the way meshgrids work in the s u r f command, we % need to transpose J v a l s before c a l l i n g surf , or e l s e the % axes w i l l be
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
  • pdf文档 Experiment 2: Logistic Regression and Newton's Method

    classes. In Matlab/Octave, you can separate the positive class and the negative class using the find command: % find returns the i n d i c e s of the % rows meeting the s p e c i f i e d condition pos = boundary is defined as the line where P(y = 1|x; θ) = g(θT x) = 0.5 which corresponds to θT x = 0 Plotting the decision boundary is equivalent to plotting the θT x = 0 line. When you are finished, your
    0 码力 | 4 页 | 196.41 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    too much? The original (pre-quantization) image is shown in figure 2-6. Get the image using this command: !wget https://github.com/reddragon/book-codelabs/raw/main/pia23378-16.jpeg Solution: First, we certain trade-offs. We hope that this chapter helps more deep learning models to cross the finish line. The next chapter will introduce learning techniques to improve quality metrics like accuracy and
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    3,其中系数2是切线的斜率。 x = np.arange(0, 3, 0.1) plot(x, [f(x), 2 * x - 3], 'x', 'f(x)', legend=['f(x)', 'Tangent line (x=1)']) 2.4. 微积分 67 2.4.2 偏导数 到目前为止,我们只讨论了仅含一个变量的函数的微分。在深度学习中,函数通常依赖于许多变量。因此,我 们需要将微分的思想推广到多元函数(multivariate download('time_machine'), 'r') as f: lines = f.readlines() return [re.sub('[^A-Za-z]+', ' ', line).strip().lower() for line in lines] lines = read_time_machine() print(f'# 文本总行数: {len(lines)}') print(lines[0]) #@save """将文本行拆分为单词或字符词元""" if token == 'word': return [line.split() for line in lines] elif token == 'char': return [list(line) for line in lines] else: print('错误:未知词元类型:' + token) (continues on
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Gaussian Discriminant Analysis, Naive

    Expectation-Maximization (EM) algorithm. 6.1 Convex Sets and Convex Functions A set C is convex if the line segment between any two points in C lies in C, i.e., for ∀x1, x2 ∈ C and ∀θ with 0 ≤ θ ≤ 1, we have we have the inequality in the fifth line. The sixth equality also comes from Eq. (31) 13 To tighten the lower bound, we should let the equality (in the forth line) hold. According to Jensen’s inequality in particular holds for Qi = Q[t] i , according to Eq. (32). We have the inequality in the second line, because θ[t+1] is calculated by θ[t+1] = arg max θ � i � z(i)∈Ω Q[t] i (z(i)) log p(x(i), z(i);
    0 码力 | 19 页 | 238.80 KB | 1 年前
    3
  • pdf文档 如何利用深度学习提高高精地图生产的自动化率-邹亮

    �������������� ���� ���� ������(Lane line Detection) �� ���)�)�(� ����&���&��,���,� ������� �������� �� ���&�&��&� �&��,��� ����&����&��,���,� ������(Lane line Detection) g�R������f A��������) S�e�����)��������)��� Oc��������(����������������������)��������������� �����U���a�S�PeF ������(Lane line Detection)��� �������� (Sign Detection, Traffic Light Detection) �� ���������� �������� (Sign Detection
    0 码力 | 34 页 | 56.04 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    gi(ω∗) = 0 for ∀i = 1, 2, · · · , k. Another observation is that, since the inequality in the third line holds with equality, ω∗ actually minimizes L(ω, α∗, β ∗) over ω. 2.2.3 Karush-Kuhn-Tucker (KKT) Conditions following, we take α1 and α2 for example to explain the optimization process of the SMO algorithm (i.e., Line 4 in Algorithm 1). By treating α1 and α2 as variables while the others as known quantities, the objective ?! + ?! (b) y(1)y(2) = 1 Figure 7: α+ 1 and α+ 2 . which confines the optimization to be on a line. Since 0 ≤ α1, α2 ≤ C, we can derive a lower bound L and an upper bound H for them. As shown in Fig
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    rank0_print("Loading data...") train_data = [] with open(data_args.data_path, "r") as f: for line in f: train_data.append(json.loads(line)) train_dataset = dataset_cls(train_data, tokenizer=tokenizer, max_len=max_len) eval_data_path: eval_data = [] with open(data_args.eval_data_path, "r") as f: for line in f: eval_data.append(json.loads(line)) eval_dataset = dataset_cls(eval_data, tokenizer=tokenizer, max_len=max_len)
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
共 20 条
  • 1
  • 2
前往
页
相关搜索词
kerastutorialPyTorchReleaseNotesExperimentLinearRegressionLogisticandNewtonMethodEfficientDeepLearningBookEDLChapterCompressionTechniques动手深度学习v2LectureonGaussianDiscriminantAnalysisNaive如何利用提高高精地图生产自动自动化邹亮SupportVectorMachineAI模型千问qwen中文文档
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩