积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(22)机器学习(22)

语言

全部英语(13)中文(简体)(9)

格式

全部PDF文档 PDF(22)
 
本次搜索耗时 0.051 秒,为您找到相关结果约 22 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 构建基于富媒体大数据的弹性深度学习计算平台

    事件2-XXXX 人物出现:id1, id2 场景二 … 用户行 为 用户数 据 推理结 果 推理服务 数据抽样 和整理 样本 训练 模型 模型评估 AVA深度学习平台 Caching IO Distributed System Docker Orchestration Storage HDFS SQL NoSQL Caffe MXNet Tensorflow Data
    0 码力 | 21 页 | 1.71 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    collaborative filtering with implicit feedback. The training data for this model should contain binary information about whether a user interacted with a specific item. NCF was first described by Xiangnan collaborative filtering with implicit feedback. The training data for this model should contain binary information about whether a user interacted with a specific item. NCF was first described by Xiangnan collaborative filtering with implicit feedback. The training data for this model should contain binary information about whether a user interacted with a specific item. NCF was first described by Xiangnan
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Lecture 3: Logistic Regression

    Fraudulent (Yes/No)? Tumor: Malignant/Benign? The classification result can be represented by a binary variable y ∈ {0, 1} y = � 0 : “Negative Class” (e.g., benign tumor) 1 : “Positive Class” (e.g. but we would like to predict only a small number of discrete values (instead of continuous values) Binary classification problem: y ∈ {0, 1} where 0 represents negative class, while 1 denotes positive class categorized into Transformation to binary Extension from binary Hierarchical classification Feng Li (SDU) Logistic Regression September 20, 2023 24 / 29 Transformation to Binary One-vs.-rest (one-vs.-all,
    0 码力 | 29 页 | 660.51 KB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    2.10 sparse_categorical_crossentropy . . . . . . . . . . . . . . . . . . . . . . . . 135 7.2.11 binary_crossentropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7.2.12 kullback_leibler_divergence 8.2 可使用的评价函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.2.1 binary_accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.2.2 categorical_accuracy loss='categorical_crossentropy', metrics=['accuracy']) # 二分类问题 model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) # 均方误差回归问题 model.compile(optimizer='rmsprop', loss='mse')
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 keras tutorial

    data = HDF5Matrix('data.hdf5', 'data') to_categorical It is used to convert class vector into binary class matrix. >>> from keras.utils import to_categorical >>> labels = [0, 1, 2, 3, 4, 5, 6, logcosh  huber_loss  categorical_crossentropy  sparse_categorical_crossentropy  binary_crossentropy  kullback_leibler_divergence  poisson  cosine_proximity  is_categorical_crossentropy Keras provides quite a few metrics as a module, metrics and they are as follows:  accuracy  binary_accuracy  categorical_accuracy  sparse_categorical_accuracy  top_k_categorical_accuracy
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    properties of the English language. The authors also found that fine-tuning such a pre-trained model for a binary classification problem (IMDb dataset) required only 100 labeled examples ( less labeled examples distillation might not be much better than using one-hot labels. This is particularly an issue with binary classification problems, which are very common. Subclass Distillation is a way of avoiding this faster convergence as well as improved accuracy on binary classification tasks, when compared to conventional distillation. For example on the natively binary classification task like Criteo’s ad click prediction
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别

    虽然 Categorical / Binary CE 是更常用的损失函数,不过他们都是 CE 的变体。 CE 定义如下: 对于二分类问题 (C‘=2) ,CE 定义如下: Categorical CE Loss(Softmax Loss) 常用于输出为 One-hot 向量的多类别分类(Multi-Class Classification)模型。 Binary CE Loss(Sigmoid Loss(Sigmoid CE Loss) 与 Softmax Loss 不同,Binary CE Loss 对于每个向量分量(class)都是独立 的,这意味着每个向量分量计算的损失不受其他分量的影响。 因此,它常被用于多标签分类(Multi-label classification)模型。 “Hello TensorFlow” Try it 模型训练过程分析 模型训练过程 学习率(Learning rate)
    0 码力 | 51 页 | 2.73 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 24. Logistic Regression

    ▪ for continuous: ? = ?? + ? ▪ for probability output: ? = ? ?? + ? ▪ ?: ??????? ?? ???????? Binary Classification ▪ interpret network as ?: ? → ? ? ?; ? ▪ output ∈ 0, 1 ▪ which is exactly what ▪ Controversial! ▪ MSE => regression ▪ Cross Entropy => classification 0.7 0.3 0.7 MSE CEL Binary Classification ▪ ?: ? → ? ? = 1 ? ▪ if ? ? = 1 ? > 0.5, predict as 1 ▪ else predict as 0 ▪ minimize
    0 码力 | 12 页 | 798.46 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    ), ]) adam = optimizers.Adam(learning_rate=LEARNING_RATE) model.compile(optimizer=adam, loss='binary_crossentropy', metrics=['accuracy']) return model model = create_model() model.summary() model the teacher models to generate soft-labels for the training samples. The soft labels replace the binary values in the ground-truth labels with the probabilities of the sample image belonging to each class generate `soft-labels' for the student, which gives the student more information than just hard binary labels. The student is trained using the regular cross-entropy loss with the hard labels, as well
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    activation='relu')) model.add(Dense(1, activation='sigmoid')) # 创建最末层 model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # 模型装配与训练 history = model.fit(X_train Dropout(rate=0.5)) model.add(Dense(1, activation='sigmoid')) # 输出层 model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # 模型装配 # 训练 history = model l2(_lambda))) # 输出层 model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # 模型装配 return model 在保持网络结构不变的条件下,我们通过调节正则化系数
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
共 22 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
构建基于媒体数据弹性深度学习计算平台PyTorchReleaseNotesLectureLogisticRegressionKerasPythonkerastutorialEfficientDeepLearningBookEDLChapterAdvancedTechniquesTechnicalReviewTensorFlow快速入门实战验证验证码识别24深度学习
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩