积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(18)机器学习(18)

语言

全部英语(15)中文(简体)(3)

格式

全部PDF文档 PDF(18)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 18 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    often tolerate approximate responses, since often there are no exact answers. Machine learning algorithms help build models, which as the name suggests is an approximate mathematical model of what outputs that you would end up clicking on, at that particular moment, with more data and sophisticated algorithms, these models can be trained to be fairly accurate over a longer term. Figure 1-1: Relation between training algorithms There has been substantial progress in machine learning algorithms over the past two decades. Stochastic Gradient Descent (SGD) and Backpropagation were the well-known algorithms designed
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    number of examples / more than two features? In those cases, we could use classical machine learning algorithms like the Support Vector Machine4 (SVM) to learn classifiers that would do this for us. We could models: 1. Embedding Table Generation: Generate the embeddings for the inputs using machine learning algorithms of your choice. 2. Embedding Lookup: Look up the embeddings for the inputs in the embedding table embeddings. One example of an automated embedding generation technique is the word2vec family of algorithms6 (apart from others like GloVe7) which can learn embeddings for word tokens for NLP tasks. The
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    rest of the states (unimportant parameters). Figure 7-2: A comparison of hyperparameter search algorithms for two hyperparameters. The blue contours show the regions with positive results while the red search approach on the budget allocation to cap the resource utilization. Multi-Armed Bandit based algorithms allocate a finite amount of resources to a set of hyperparameter configurations. The trials for HyperBand to terminate the runs sooner if they do not show improvements for a number of epochs. The algorithms like HyperBand bring the field of HPO closer to the evolutionary approaches which are based on
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野

    ng_algorithms#/media/File:Moving_From_unknown_to_known_feature_spaces_based_on_TS-ELM_with_random_kernels_and_connections.tif https://commons.wikimedia.org/wiki/Category:Machine_learning_algorithms#/m andom_kernels_and_connections.tif https://commons.wikimedia.org/wiki/Category:Machine_learning_algorithms#/media/File:OPTICS.svg May be re-distributed in accordance with the terms of the CC-SA 4.0 license
    0 码力 | 64 页 | 13.45 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    Research Fellow, National University of Singapore, Singapore. Research Interests: Distributed Algorithms and Systems, Wireless Net- works, Mobile Computing, Internet of Things. Feng Li (SDU) Overview September 6, 2023 3 / 57 Course Information We will investigate fundamental concepts, techniques and algorithms in machine learning. The topics include linear regression, logistic re- gression, regularization Overview September 6, 2023 45 / 57 Active Learning Basic idea: Traditional supervised learning algorithms passively accept training data. Instead, query for annotations on informative images from the unlabeled
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    Validation Testing Step 4. torch.optim Load Data torch.optim ● Gradient-based optimization algorithms that adjust network parameters to reduce error. (See Adaptive Learning Rate lecture video) ● optimizer.step() to adjust model parameters. See official documentation for more optimization algorithms. Training & Testing Neural Networks – in Pytorch Define Neural Network Loss Function Optimization
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 keras tutorial

    of the major subfield of machine learning framework. Machine learning is the study of design of algorithms, inspired from the model of human brain. Deep learning is becoming more popular in data science open source machine learning library. It is used for classification, regression and clustering algorithms. Before moving to the installation, it requires the following:  Python version 3.5 or higher process huge amount of features, which makes deep learning a very powerful tool. Deep learning algorithms are also useful for the analysis of unstructured data. Let us go through the basics of deep learning
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Lecture 6: Support Vector Machine

    by φ(x(i))Tφ(x(j)) = K(x(i), x(j)) Most learning algorithms are like that SVM, linear regression, etc. Many of the unsupervised learning algorithms too can be kernelized (e.g., K-means clustering, Principal
    0 码力 | 82 页 | 773.97 KB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    x(j) with K(x(i), x(j)). Actually, most learning algorithms are like that, such as SVM, linear regression, etc. Many of the unsupervised learning algorithms (e.g., K-means clustering, Principal Component
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    arXiv:1510.00149 (2015). 16 Bottou, Leon, and Yoshua Bengio. "Convergence properties of the k-means algorithms." Advances in neural information processing systems 7 (1994). 15 David Arthur and Sergei Vassilvitskii advantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms (SODA '07). Society for Industrial and Applied Mathematics, USA, 1027–1035. with tf.GradientTape()
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
共 18 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterIntroductionArchitecturesAutomationQCon北京2018键盘输入键盘输入神经网络神经网神经网络深度学习彭博应用李碧野LectureOverviewMachinePytorchTutorialkerastutorialSupportVectorNotesonAdvancedCompressionTechniques
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩