积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(21)机器学习(21)

语言

全部英语(17)中文(简体)(4)

格式

全部PDF文档 PDF(21)
 
本次搜索耗时 0.025 秒,为您找到相关结果约 21 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    are just a small subset of the available techniques. It is often tedious to decide which ones would work for a problem even for experts. The simplest approach is to try and see which ones produce the best like learning rate, batch size or momentum are geared towards model convergence. However, they all work in conjunction to produce better models faster. Let's say that we are optimizing the validation loss than the model with 20% dropout rate and achieves a better accuracy as well. Table 7-2 shows a breakdown of trials for this run. Note that the bracket ids are in reverse order in contrast to the example
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    contrast augmentation, color correction, hue augmentation, saturation, cutout, etc. Figure 3-7 shows a breakdown of the contributions of various transformations on the validation accuracy of a model trained on print(val_ds.as_numpy_iterator().next()[0].shape) (264, 264, 3) (264, 264, 3) Our dataset is ready. Let’s work on the model. We use a pre-trained ResNet50 model with the top (softmax) layer replaced with a new have multiple models which also multiplies our deployment costs. Hinton et al.18, in their seminal work explored how smaller student networks can be taught to extract “dark knowledge” from single or ensembles
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    large network could be safely removed with minimal performance deterioration. A random removal could work for removing a few weights. However, when pruning a large number of weights, say 60%, we risk the matrix multiplication anyway. Structured sparsity as the name suggests, incorporates some sort of structure into the process of pruning. One way to do this is through pruning blocks of weights together (block weights (the Train Weights step) until the model achieves its best performance. Frankle et al.’s work9 on the Lottery Ticket Hypothesis took a different look at pruning. They postulated that within every
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 深度学习下的图像视频处理技术-沈小勇

    [SIGGRAPH 17] • White-Box: [ACM TOG 18] • Distort-and-Recover: [CVPR 18] • DPE: [CVPR 18] Previous Work Input WVM [CVPR’16] JieP [ICCV’17] HDRNet [Siggraph’17] DPE [CVPR’18] White-Box [TOG’18] Distort-and-Recover DESR [Liao et al, 2015], VSRNet [Kappeler, et al, 2016], [Caballero et al, 2016], etc. Previous Work 38 Effectiveness How to make good use of multiple frames? Remaining Challenges 39 Data from Vid4 图像去模糊问题 75 Data from previous work Different Blur Assumptions Uniform: [Fergus et al, 2006], [Shan et al, 2009], [Cho et al, 2009], [Xu et al, 2010], etc. Previous Work 76 Data from [Xu et al, 2010]
    0 码力 | 121 页 | 37.75 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    v/s -5.0)? If we can tolerate some loss of precision, can we use b-bits and save some space? Let us work on a scheme for going from this higher-precision domain (32-bits) to a quantized domain (b-bit values) Mapping from a high precision to a low precision domain. Visually inspecting figure 2-4, can you work out the formula for mapping a given floating-point value (x) to a quantized value (xq). Assume that given x. Logistics We just wanted to take a moment to state that in this book, we have chosen to work with Tensorflow 2.0 (TF) because it has exhaustive support for building and deploying efficient models
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    relationships between inputs. In such pretext tasks, typically, the model pretends that a part/structure of the input is missing and it learns to predict the missing bit. It is similar to solving an almost project we will demonstrate that self-supervised models provide both those efficiency gains. We will work on the AGNews dataset (the same that we used in chapter 4) for text classification using a pre-trained Keras, and this guide for some optimizations to make it efficient. Also consider going through the work by Izsak et al.11 which presents a collection of tweaks to achieve BERT-like quality but with a budget
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    Embeddings form a crucial part of modern deep-learning models, and we are excited to explain how they work. In the following section we will explain them through a toy example, but feel free to jump ahead the high-dimensional representation. It is useful because it is often computationally infeasible to work with data that has a large number of features. However, not all features might be equally important on what we thought was reasonable. The purpose of this toy-example is to illustrate how embeddings work, and we encourage you to try and construct your own example to understand it better. represented
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    the mathematical theories behind the machine learning algorithm. Practice what you have learned. Work hard! Feng Li (SDU) Overview September 6, 2023 7 / 57 What is Machine Learning ? A computer program aspects of the data Examples: Discovering clusters Discovering latent factor Discovering graph structure Matrix completion Feng Li (SDU) Overview September 6, 2023 28 / 57 Unsupervised Learning: Discovering
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    many layers as Torch. • It includes lot of loss functions. • It allows building networks whose structure is dependent on computation itself. • NLP: account for variable length sentences. Instead of padding the sentence’s length. PyTorch • Fundamental Concepts of PyTorch • Tensors • Autograd • Modular structure • Models / Layers • Datasets • Dataloader • Visualization Tools like • TensorboardX (monitor training)
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 keras tutorial

    libraries but difficult to understand for creating neural networks. Keras is based on minimal structure that provides a clean and easy way to create deep learning models based on TensorFlow or Theano It supports the following features:  Consistent, simple and extensible API.  Minimal structure - easy to achieve the result without any frills.  It supports multiple platforms and backends chapter. Introduction A Keras layer requires shape of the input (input_shape) to understand the structure of the input data, initializer to set the weight for each input and finally activators to transform
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
共 21 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterAutomationTechniquesAdvancedCompression深度学习图像视频处理技术沈小勇TechnicalReviewArchitecturesLectureOverviewPyTorchTutorialkerastutorial
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩