深度学习与PyTorch入门实战 - 18.1 激活函数梯度激活函数及其梯度 主讲人:龙良曲 Activation Functions Derivative Sigmoid / Logistic Derivative torch.sigmoid Tanh = 2??????? 2? − 1 Derivative torch.tanh Rectified Linear Unit Derivative F.relu 下一课时 Loss及其梯度0 码力 | 14 页 | 724.00 KB | 1 年前3
常见函数梯度常见函数梯度 主讲人:龙良曲 Common Functions ?? + ? ??? + ?? ??? + ?? [? − (?? + ?)]? ?log(?? + ?) 下一课时 什么是激活函数 Thank You.0 码力 | 9 页 | 282.15 KB | 1 年前3
激活函数与GPU加速激活函数与GPU加速 主讲人:龙良曲 Leaky ReLU simply SELU softplus GPU accelerated 下一课时 测试 Thank You.0 码力 | 11 页 | 452.22 KB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版2021121 感知机 6.2 全连接层 6.3 神经网络 6.4 激活函数 6.5 输出层设计 6.6 误差计算 6.7 神经网络类型 6.8 油耗预测实战 6.9 参考文献 第 7 章 反向传播算法 7.1 导数与梯度 7.2 导数常见性质 7.3 激活函数导数 7.4 损失函数梯度 7.5 全连接层梯度 预览版202112 7 7.6 链式法则 7.7 反向传播算法 7.8 Himmelblau 函数优化实战 7.9 反向传播算法实战 7.10 参考文献 第 8 章 PyTorch 高级用法 8.1 常见功能模块 8.2 模型装配、训练与测试 8.3 模型保存与加载 8.4 自定义类 8.5 模型乐园 8.6 测量工具 8.7 可视化 8.8 参考文献 第 WGAN 原理 13.8 WGAN-GP 实战 13.9 参考文献 第 14 章 强化学习 14.1 先睹为快 14.2 强化学习问题 14.3 策略梯度方法 14.4 值函数方法 14.5 Actor-Critic 方法 14.6 小结 14.7 参考文献 第 15 章 自定义数据集 15.1 精灵宝可梦数据集 15.2 自定义数据集加载流程0 码力 | 439 页 | 29.91 MB | 1 年前3
Keras: 基于 Python 的深度学习库的相同的栈式 LSTM 模型 . . . . . . . . . . . . 15 3.2 函数式 API 指引 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 开始使用 Keras 函数式 API . . . . . . . . . . . . . . . . . . . . . . 47 4.2.3.11 get_layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 函数式 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.1 Model . . . . . . . . . . . . . . . . 133 7 损失函数 Losses 134 7.1 损失函数的使用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.2 可用损失函数 . . . . . . . . . . . . . . . . . . . .0 码力 | 257 页 | 1.19 MB | 1 年前3
动手学深度学习 v2.0. . . . . . . . . . . . . . . . . . . . 81 2.7.1 查找模块中的所有函数和类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.7.2 查找特定函数和类的用法 . . . . . . . . . . . . . . . . . . . . . . . . . . . 定义模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.5 定义损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.6 定义优化算法 . . . 4 初始化模型参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.3.5 定义损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 ii 3.3.6 定义优化算法0 码力 | 797 页 | 29.45 MB | 1 年前3
机器学习课程-温州大学-02-数学基础回顾-2.CS229-Prob概率的基本要素 1.1 条件概率和独立性 2. 随机变量 2.1 累积分布函数 2.2 概率质量函数 2.3 概率密度函数 2.4 期望 2.5 方差 2.6 一些常见的随机变量 3. 两个随机变量 3.1 联合分布和边缘分布 3.2 联合概率和边缘概率质量函数 3.3 联合概率和边缘概率密度函数 3.4 条件概率分布 3.5 贝叶斯定理 3.6 独立性 3.7 期望和协方差 事件集(事件空间) :元素 的集合(称为事件)是 的子集(即每个 是一个实 验可能结果的集合)。 备注: 需要满足以下三个条件: (1) (2) (3) 概率度量 :函数 是一个 的映射,满足以下性质: 对于每个 , , 如果 是互不相交的事件 (即 当 时, ), 那么: 以上三条性质被称为概率公理。 举例: 考虑投掷六面骰子的事件。样本空间为 , , , , , , , , , , 。然而,在实践中,我 们通常不关心获得任何特定正反序列的概率。相反,我们通常关心结果的实值函数,比如我们10次投掷 中出现的正面数,或者最长的背面长度。在某些技术条件下,这些函数被称为随机变量。 更正式地说,随机变量 是一个的 函数。通常,我们将使用大写字母 或更简单的 (其中 隐含对随机结果 的依赖)来表示随机变量。我们将使用小写字母 来表示随机变量的值。0 码力 | 12 页 | 1.17 MB | 1 年前3
机器学习课程-温州大学-numpy使用总结03 ufunc函数 04 NumPy的函数库 3 1.NumPy概述 01 NumPy概述 02 NumPy数组(ndarry)对象 03 ufunc函数 04 NumPy的函数库 4 NumPy(Numeric Python)是Python的一种开源的数值计算扩展库。 它包含很多功能: · 创建n维数组(矩阵) · 对数组进行函数运算 · 数值积分 ndarray:全称(n-dimensional array object)是储存单一数据类型的 多维数组。 ufunc:全称(universal function object)它是一种能够对数组进行处 理的函数。 NumPy的官方文档: https://docs.scipy.org/doc/numpy/reference/ NumPy是什么? 7 Anaconda里面已经安装过NumPy。 原生的Python安装: pip install numpy 8 2.NumPy数组(ndarry)对象 01 NumPy概述 02 NumPy数组(ndarry)对象 03 ufunc函数 04 NumPy的函数库 9 1.1 认识 NumPy 数组对象 >import numpy as np # 导入NumPy工具包 >data = np.arange(12).reshape(3, 4)0 码力 | 49 页 | 1.52 MB | 1 年前3
机器学习课程-温州大学-02-数学基础回顾-0.机器学习的数学基础整理(国内教材)(1) 或者:?′(?0) = lim ?→?0 ?(?)−?(?0) ?−?0 (2) 2.左右导数导数的几何意义和物理意义 函数?(?)在?0处的左、右导数分别定义为: 左导数:?′−(?0) = lim ??→0− ?(?0+??)−?(?0) ?? = lim ?→?0− ?(?)−?(?0) ?−?0 0+??)−?(?0) ?? = lim ?→?0 + ?(?)−?(?0) ?−?0 3.函数的可导性与连续性之间的关系 Th1: 函数?(?)在?0处可微⇔ ?(?)在?0处可导。 Th2:若函数在点?0处可导,则? = ?(?)在点?0处连续,反之则不成立.即函数连续不一定可 导。 Th3:?′(?0)存在⇔ ?′−(?0) = ?′+(?0) 4.平面曲线的切线和法线 ′(?0)(? − ?0) 法线方程:? − ?0 = − 1 ?′(?0) (? − ?0), ?′(?0) ≠ 0 5.四则运算法则 机器学习的数学基础 2 设函数? = ?(?),? = ?(?)在点?可导,则: (1) (? ± ?)′ = ?′ ± ?′ (2) (??)′ = ??′ + ??′0 码力 | 31 页 | 1.18 MB | 1 年前3
机器学习课程-温州大学-01机器学习-引言用于描述和解决智能体(agent)在与环境的交 互过程中通过学习策略以达成回报最大化或实现 特定目标的问题 。 2. 机器学习的类型-强化学习 19 ✓ 机器学习方法 ✓ 模型 ✓ 损失函数 ✓ 优化算法 ✓ 模型评估指标 机器学习的概念 20 机器学习的概念-模型 机器学习首先要考虑使用什么样的模型。 模型的类别,大致有两种:一是概率模型(Probabilistic Model)和非概率模型 对于非概率模型而言,可按照判别函数线性与否分成线性模型与非线性模型。 感知机、线性支持向量机、KNN、K-means是线性模型。 核支持向量机、AdaBoost、神经网络属于非线性模型。 机器学习的概念-模型 22 1. 0-1损失函数(0-1 Loss Function) L ?, ? ? = ቊ1, ? ≠ ? ? 0, ? = ? ? 2. 平方损失函数(Quadratic Loss ? ? = ? − ? ? 2 3. 绝对损失函数(Absolute Loss Function) L ?, ? ? = ? − ? ? 4. 对数损失函数(Logarithmic Loss Function) L ?, ? ? ? = −log? ? ? 机器学习的概念-损失函数 23 根据上述损失函数模型,我们可知,损失函数值越小,模型性能越好。给定一个数据集,我们将 训练0 码力 | 78 页 | 3.69 MB | 1 年前3
共 56 条
- 1
- 2
- 3
- 4
- 5
- 6













