PyTorch Release Notesinstall a Conda package manager, and add the conda path to your PYTHONPATH for example, using export PYTHONPATH="/opt/conda/lib/python3.8/site-packages" if your Conda package manager was installed in /opt/conda install a Conda package manager, and add the conda path to your PYTHONPATH for example, using export PYTHONPATH="/opt/conda/lib/python3.8/site-packages" if your Conda package manager was installed in /opt/conda install a Conda package manager, and add the conda path to your PYTHONPATH for example, using export PYTHONPATH="/opt/conda/lib/python3.8/site-packages" if your Conda package manager was installed in /opt/conda0 码力 | 365 页 | 2.94 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 7 - Automationputs everything together and runs the search for 150 episodes. controller = Controller() child_manager = ChildManager() start_state = np.array([random.randrange(len(STATE_SPACE[0]))]) for episode in reshape(TIMESTEP_ADDRESS_SPACE) # Evaluate the child generated by the controller reward, accuracy = child_manager.get_rewards(config) print( 'Episode: {} Reward: {} Accuracy: {}'.format( episode, reward, accuracy0 码力 | 33 页 | 2.48 MB | 1 年前3
AI大模型千问 qwen 中文文档langchain.llms.base import LLM from typing import Any, List, Mapping, Optional from langchain.callbacks.manager import CallbackManagerForLLMRun device = "cuda" # the device to load the model onto model = AutoModelForCausalLM history_len = history_len def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, ) -> str: messages = [ {"role": "system", "content":0 码力 | 56 页 | 835.78 KB | 1 年前3
构建基于富媒体大数据的弹性深度学习计算平台comparison Model Fusion Gray Update Auto Evaluation Log Server Graph Abstraction Data Flow API Manager Pipeline AVA 弹性深度学习平 台 L1 L2 L3 L4 L5 原子API 基础模型 感知层1 API 感知层2 API Vision 综合API 业务逻辑API0 码力 | 21 页 | 1.71 MB | 1 年前3
QCon北京2018-《未来都市--智慧城市与基于深度学习的机器视觉》-陈宇恒Kubernetes对NUMA、异构计算、存储设备的调度能力待加强 1.6 nvidia/gpu custom scheduler 1.8 local-volume 1.10 CPU manager Device plugin 1.9 volume-awared scheduling Go语言在高性能系统中的实践经验 • 为什么用Go - 比起C++,更易于实践各种并发模式 -0 码力 | 23 页 | 9.26 MB | 1 年前3
QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野© 2018 Bloomberg Finance L.P. All rights reserved. Qcon Beijing April 21, 2018 Biye Li Team Manager, Data Technologies Automation Xiangqian Yu Team Lead, Derivatives Data From Keyboards to Neural Networks0 码力 | 64 页 | 13.45 MB | 1 年前3
动手学深度学习 v2.0Notebook并加载插件: pip install d2l-notedown # 你可能需要卸载原始notedown jupyter notebook --NotebookApp.contents_manager_class='notedown.NotedownContentsManager' 要在运行Jupyter Notebook时默认打开notedown插件,请执行以下操作:首先,生成一个Jupyter 以 下 行 (对 于Linux/macOS, 通 常 位 于~/.jupyter/ jupyter_notebook_config.py): c.NotebookApp.contents_manager_class = 'notedown.NotedownContentsManager' 在这之后,你只需要运行jupyter notebook命令就可以默认打开notedown插件。 在远程服务器上运行Jupyter0 码力 | 797 页 | 29.45 MB | 1 年前3
共 7 条
- 1













