积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(19)机器学习(19)

语言

全部英语(13)中文(简体)(6)

格式

全部PDF文档 PDF(19)
 
本次搜索耗时 0.053 秒,为您找到相关结果约 19 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 AI大模型千问 qwen 中文文档

    to(device) # Directly use generate() and tokenizer.decode() to get the output. # Use `max_new_tokens` to control the maximum output length. generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 to(device) # Directly use generate() and tokenizer.decode() to get the output. # Use `max_new_tokens` to control the maximum output length. generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 "your_quantized_model_path" quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM �→" } # Load your tokenizer and model with AutoAWQ tokenizer = AutoTokenizer.from_pretrained(model_path)
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    are passed through a softmax classifier to reduce the search space to fewer choices. A subsequent version of this controller added additional parameters for each layer to allow skip connections. Figure maximizes the following objective: where is a weight factor defined as, such that and variables control the reward penalty for latency violation. In addition to the multiobjective optimization, Mnasnet intelligence. Vol. 33. No. 01. 2019. performances on CIFAR-10 and ImageNet datasets. However, a larger version of AmoebaNet-A established a new state of the art performance on ImageNet. Figure 7-10: The left
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    components”节点下,比对目前计算机已经安装的显卡驱动“Display Driver”的版本号 “Current Version”和 CUDA 自带的显卡驱动版本号“New Version”,如果“Current Version”大于“New Version”,则需要取消“Display Driver”的勾,如果小于或等于,则 默认勾选即可,如图 1.27 所示。设置完成后即可正常安装。 pytorch 安装完后,在 ipython 中输入“import torch”命令即可验证 CPU 版本是否安装成功。 PyTorch GPU/CPU 版本安装完成后,可以通过“torch.__version__”查看本地安装的 PyTorch 版本号,如图 1.32 所示。 常用的 Python 工具库也可以顺带安装,命令如下: # 使用清华源安装常用 python 库 pip install A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg 和 D. Hassabis, “Human-level control through deep reinforcement learning,” Nature, 卷 518, pp. 529-533, 2 2015. 预览版202112
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    September 6, 2023 14 / 57 Source of Training Data Provided random examples outside of the learner’s control. Negative examples available or only positive? Good training examples selected by a “benevolent” watching a given video on YouTube Predict the location in 3D space of a robot arm end effector, given control signals (torques) sent to its various motors Predict the amount of prostate specific antigen (PSA)
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    Docker 19.03, complete the steps below. The method implemented in your system depends on the DGX OS version that you installed (for DGX systems), the NGC Cloud Image that was provided by a Cloud Service Provider NGC. Contents of the PyTorch container This container image contains the complete source of the version of PyTorch in /opt/ pytorch. It is prebuilt and installed in the default Python environment (/usr/local/lib/ PyTorch release includes the following key features and enhancements. ‣ PyTorch container image version 23.07 is based on 2.1.0a0+b5021ba. Announcements ‣ Starting with the 23.06 release, the NVIDIA
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    the vertical axis. The rightmost image in the middle row in figure 3-6 is a horizontally flipped version of the central image. # Horizontal Flip transform_and_show(image_path, flip_horizontal=True) Shift “estoy ir mercado”, sufficiently conveys the information that the person is going to the market. A version of this example could be a native english speaker’s response, “I go market”, to an elementary level english speaker. Although the native english speaker can formulate a better sentence, a simplified version is more likely to convey their message to the elementary level english speaker. A transformation
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 keras tutorial

    must satisfy the following requirements:  Any kind of OS (Windows, Linux or Mac)  Python version 3.5 or higher. Python Keras is python based neural network library so python must be installed >>> As of now the latest version is ‘3.7.2’. If Python is not installed, then visit the official python link - https://www.python.org/ and download the latest version based on your OS and install moving to the installation, it requires the following:  Python version 3.5 or higher  NumPy version 1.11.0 or higher  SciPy version 0.17.0 or higher Keras 6  joblib 0.11
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    two networks. The one on the left is the original network and the one on the right is its pruned version. Note that the pruned network has fewer nodes and some retained nodes have fewer connections. Let's Figure 5-3: 1-D block pruning between two dense layers. The network on the right is the pruned version of the network on the left. The pruned network is a result of pruning the first row of the weight 1728 Figure 5-5 shows the comparison of compressed sizes of our regular model and its 50% sparse version. We used Tensorflow's save_model() API and zipped the model files using gzip. In addition to the
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    for the i-th class is given by: After, label smoothing it is defined as follows: can be used to control the noise. If it is too small, it might not have any effect. If it is too high, the distribution
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 rwcpu8 Instruction Install miniconda pytorch

    download speed of pytorch is slow. 4. If PyTorch is successfully installed, then you could see the version of PyTorch by the following command: 5. Verify PyTorch is able to use GPUs. The output should install pytorch torchvision cudatoolkit=10.2 -c pytorch python -c 'import torch; print(torch.__version__)' python -c 'import torch; print(torch.cuda.is_available())' Useful Links Miniconda Documentation
    0 码力 | 3 页 | 75.54 KB | 1 年前
    3
共 19 条
  • 1
  • 2
前往
页
相关搜索词
AI模型千问qwen中文文档EfficientDeepLearningBookEDLChapterAutomationPyTorch深度学习LectureOverviewReleaseNotesTechniqueskerastutorialAdvancedCompressionTechnicalReviewrwcpu8InstructionInstallminicondapytorch
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩