积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(17)机器学习(17)

语言

全部英语(11)中文(简体)(6)

格式

全部PDF文档 PDF(17)
 
本次搜索耗时 0.029 秒,为您找到相关结果约 17 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    Docker 19.03, complete the steps below. The method implemented in your system depends on the DGX OS version that you installed (for DGX systems), the NGC Cloud Image that was provided by a Cloud Service Provider NGC. Contents of the PyTorch container This container image contains the complete source of the version of PyTorch in /opt/ pytorch. It is prebuilt and installed in the default Python environment (/usr/local/lib/ PyTorch release includes the following key features and enhancements. ‣ PyTorch container image version 23.07 is based on 2.1.0a0+b5021ba. Announcements ‣ Starting with the 23.06 release, the NVIDIA
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    the vertical axis. The rightmost image in the middle row in figure 3-6 is a horizontally flipped version of the central image. # Horizontal Flip transform_and_show(image_path, flip_horizontal=True) Shift “estoy ir mercado”, sufficiently conveys the information that the person is going to the market. A version of this example could be a native english speaker’s response, “I go market”, to an elementary level english speaker. Although the native english speaker can formulate a better sentence, a simplified version is more likely to convey their message to the elementary level english speaker. A transformation
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 keras tutorial

    must satisfy the following requirements:  Any kind of OS (Windows, Linux or Mac)  Python version 3.5 or higher. Python Keras is python based neural network library so python must be installed >>> As of now the latest version is ‘3.7.2’. If Python is not installed, then visit the official python link - https://www.python.org/ and download the latest version based on your OS and install moving to the installation, it requires the following:  Python version 3.5 or higher  NumPy version 1.11.0 or higher  SciPy version 0.17.0 or higher Keras 6  joblib 0.11
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    two networks. The one on the left is the original network and the one on the right is its pruned version. Note that the pruned network has fewer nodes and some retained nodes have fewer connections. Let's Figure 5-3: 1-D block pruning between two dense layers. The network on the right is the pruned version of the network on the left. The pruned network is a result of pruning the first row of the weight 1728 Figure 5-5 shows the comparison of compressed sizes of our regular model and its 50% sparse version. We used Tensorflow's save_model() API and zipped the model files using gzip. In addition to the
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 rwcpu8 Instruction Install miniconda pytorch

    download speed of pytorch is slow. 4. If PyTorch is successfully installed, then you could see the version of PyTorch by the following command: 5. Verify PyTorch is able to use GPUs. The output should install pytorch torchvision cudatoolkit=10.2 -c pytorch python -c 'import torch; print(torch.__version__)' python -c 'import torch; print(torch.cuda.is_available())' Useful Links Miniconda Documentation
    0 码力 | 3 页 | 75.54 KB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    "your_quantized_model_path" quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM �→" } # Load your tokenizer and model with AutoAWQ tokenizer = AutoTokenizer.from_pretrained(model_path) status qwen 很快,您将看到如下输出: Services NAME VERSION UPTIME STATUS REPLICAS ENDPOINT Qwen 1 - READY 2/2 3.85.107.228:30002 Service Replicas SERVICE_NAME ID VERSION IP LAUNCHED RESOURCES STATUS REGION Qwen
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 Experiment 1: Linear Regression

    extensively tested with Matlab, but they should also work in Octave, which has been called a “free version of Matlab”. If you are using Octave, be sure to install the Image package as well (available for ... y(m) � ���� , X = � ���� −(x(1))T − −(x(2))T − ... −(x(m))T − � ���� The vectorized version is useful and efficient when you’re working with numerical computing tools like Matlab/Octave. If
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    OpenVINO 开发实战系列教程 第一篇 4 5. 在执行第三步的基础上,在命令行中输入下面两行代码,执 行结果如下: >>> import torch >>> torch._ _version_ _ '1.9.0+cu102' 其中第一行表示导入 pytorch 的包支持,第二行表示版本查询, 第三行是执行结果(GPU 版本)。 现在很多开发者喜欢使用 Ubuntu 开发系统,在 Python 解释器) 完成之后,在项目中创建一个空的 python 文件命名为 main. py,然后直接输入下面两行测试代码: import torch print(torch.__version__) 执行测试(作者笔记本): 1.9.0+cu102 这样我们就完成了 PyCharm IDE 开发环境配置与项目创建。 1.4.2 张量定义与声明 张量在 Pytorch 深度学习框架中表示的数据,有几种不同的方
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    are passed through a softmax classifier to reduce the search space to fewer choices. A subsequent version of this controller added additional parameters for each layer to allow skip connections. Figure intelligence. Vol. 33. No. 01. 2019. performances on CIFAR-10 and ImageNet datasets. However, a larger version of AmoebaNet-A established a new state of the art performance on ImageNet. Figure 7-10: The left
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    optimized both in hardware and software. Let’s take a look at how we can optimize a slightly easier version of this operation (where D is a vector instead of a matrix) using quantization. Weight Quantization tflite_model_eval(). We stated that it holds the content of our model. What is that content? It is a transformed version of the tensorflow model that was trained in the training section. Now, let’s create a combined convert_and_eval()
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
共 17 条
  • 1
  • 2
前往
页
相关搜索词
PyTorchReleaseNotesEfficientDeepLearningBookEDLChapterTechniqueskerastutorialAdvancedCompressionrwcpu8InstructionInstallminicondapytorchAI模型千问qwen中文文档ExperimentLinearRegressionOpenVINO开发实战系列教程第一一篇第一篇Automation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩