积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(38)机器学习(38)

语言

全部中文(简体)(22)英语(16)

格式

全部PDF文档 PDF(38)
 
本次搜索耗时 0.048 秒,为您找到相关结果约 38 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Tutorial

    /Miniconda3-latest-Linux-x86_64.sh • After Miniconda is installed: conda install pytorch -c pytorch Writing code • Up to you; feel free to use emacs, vim, PyCharm, etc. if you want. • Our recommendations: • Install: 1234:localhost:1234 __@__.cs.princeton.edu • First blank is username, second is hostname Jupyter Notebook VS Code • Install the Python extension. • ???????????? Install the Remote Development extension. • Python Jupyter notebooks by delimiting cells/sections with #%% • Debugging PyTorch code is just like debugging any other Python code: see Piazza @108 for info. Also try Jupyter Lab! Why talk about libraries
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    architectures and an automatic mixed precision-like API that can be used seamlessly with your PyTorch code. ‣ A preview of Torch-TensorRT (1.4.0dev0) is now included. Torch-TRT is the TensorRT integration architectures and an automatic mixed precision-like API that can be used seamlessly with your PyTorch code. PyTorch Release 23.06 PyTorch RN-08516-001_v23.07 | 15 ‣ A preview of Torch-TensorRT (1.4 architectures and an automatic mixed precision-like API that can be used seamlessly with your PyTorch code. ‣ NVIDIA Deep Learning Profiler (DLProf) v1.8, which was included in the 21.12 container, was the
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    required libraries to start with. We will use the gzip python module for demonstrating compression. The code for this exercise is available as a Jupyter notebook here. %%capture import gzip import operator same number of weights pruned. Phew! It feels like we have gone through a lot of talk without much code! In chapter four, we trained a model to predict masks for pets to build snapchat like filters. Let’s prunable block using magnitude-based pruning. Note that the below code is in addition to the original segmentation project in chapter four. The code for this project is available as a Jupyter notebook here.
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 54. AutoEncoder自编码器

    Auto-Encoders 主讲:龙良曲 Outline Supervised Learning https://towardsdatascience.com/supervised-vs-unsupervised-learning-14f68e32ea8d Massive Unlabeled data Unsupervised Learning https://medium.com/ to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5 Adversarial AutoEncoders ▪ Distribution of hidden code https://towardsdatascience.com/a-wizards-guide-to-adversarial-autoencoders-part-2- exploring-lat
    0 码力 | 29 页 | 3.49 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    Anaconda to my PATH environment variable”一项,这样可以通过命令行方式调用 Anaconda 程序。如图 1.23 所示,安装程序 询问是否连带安装 VS Code 软件,选择 Skip 即可。整个安装流程约持续 5 分钟,具体时间 预览版202112 第 1 章 人工智能绪论 18 需依据计算机性能而定。 图 1.22 Anaconda 语言编写程序的方式非常多,可以使用 ipython 或者 ipython notebook 方式 交互式编写代码,也可以利用 Sublime Text、PyCharm 和 VS Code 等综合 IDE 开发中大型 项目。本书推荐使用 PyCharm 编写和调试,使用 VS Code 交互式开发,这两者都可以免费 使用,用户自行下载安装,并配置好 Python 解释器即可。限于篇幅,这里不再赘述。 预览版202112 Henderson, R. E. Howard, W. Hubbard 和 L. D. Jackel, “Backpropagation Applied to Handwritten Zip Code Recognition,” Neural Comput., 卷 1, pp. 541-551, 12 1989. [3] A. Krizhevsky, I. Sutskever 和 G
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 星际争霸与人工智能

    without Collision 3 Marines (ours) vs. 1 Super Zergling (enemy) Hit and Run Tactics 3 Marines (ours) vs. 1 Zealot (enemy) Coordinated Cover Attack 3 Marines (ours) vs. 1 Super Zergling (enemy) Focus Focus Fire without Overkill 15 Marines (ours) vs. 16 Marines (enemy) Coordinated Heterogonous Agents 2 Dropships and 2 tanks vs. 1 Ultralisk Hierarchical Reinforcement Learning Strategy & Planning Combat
    0 码力 | 24 页 | 2.54 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    can be used to infer uncertainty. A one-vs-one SVM approach can be used to tackle multiple classes. Feng Li (SDU) Overview September 6, 2023 47 / 57 Parametric vs Non-Parametric Models Parametric model regression ˆy = ˆβ 0 + p � j=1 ˆβ jxj Feng Li (SDU) Overview September 6, 2023 48 / 57 Parametric vs Non-Parametric Models (Contd.) Non-parametric model: nearest-neighbor method Make predictions for that aren’t relevant to the test case. Feng Li (SDU) Overview September 6, 2023 49 / 57 Parametric vs Non-Parametric Models (Contd.) These two methods are opposite w.r.t. computation. NN-like methods
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》1-基础理论篇:TensorFlow 2设计思想

    《TensorFlow 2 项目进阶实战》视频课程 基础理论篇:TensorFlow 2 设计思想 • TensorFlow 2 设计原则 • TensorFlow 2 核心模块 • TensorFlow 2 vs TensorFlow 1.x • TensorFlow 2 落地应用 目录 TensorFlow 2 设计原则 TensorFlow - Infra of AI TensorFlow 2 Support Limited Support Limited Support SavedModel:生产级 TensorFlow 模型格式 TensorFlow 2 vs TensorFlow 1.x Keras vs TensorFlow 1.x TensorFlow 1.x 工作流 Full of abstract notions TensorFlow 2 工作流 Native
    0 码力 | 40 页 | 9.01 MB | 1 年前
    3
  • pdf文档 Lecture 3: Logistic Regression

    Feng Li (SDU) Logistic Regression September 20, 2023 24 / 29 Transformation to Binary One-vs.-rest (one-vs.-all, OvA or OvR, one-against-all, OAA) strategy is to train a single classifier per class, classifier Feng Li (SDU) Logistic Regression September 20, 2023 25 / 29 Transformation to Binary One-vs.-One (OvO) reduction is to train K(K − 1)/2 binary classifiers For the (s, t)-th classifier: Positive
    0 码力 | 29 页 | 660.51 KB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 01. 初见PyTorch

    com/battle-of-the-deep-learning-frameworks-part-i-cff0e3841750 大浪淘沙 王者之争 https://www.edureka.co/blog/pytorch-vs-tensorflow/ 动态图 https://towardsdatascience.com/battle-of-the-deep-learning-frameworks-part-i-cff0e3841750 41750 静态图 综合评价 PyTorch TensorFlow 1 TensorFlow 2 性能 生态 工业界 学术界 上手难度 易用性 兼容性 发展前景 0 小结 VS PyTorch生态 TorchVision PyTorch能做什么? • GPU加速 • 自动求导 • 常用网络层 1. GPU加速 2. 自动求导 3. 常用网络层 ▪ nn
    0 码力 | 19 页 | 1.06 MB | 1 年前
    3
共 38 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
PyTorchTutorialReleaseNotesEfficientDeepLearningBookEDLChapterAdvancedCompressionTechniques深度学习入门实战54AutoEncoder编码码器编码器深度学习星际争霸星际争霸人工智能人工智能LectureOverviewTensorFlow快速基础理论基础理论设计思想LogisticRegression01初见
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩