积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(75)机器学习(75)

语言

全部中文(简体)(46)英语(29)

格式

全部PDF文档 PDF(75)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 75 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lecture 4: Regularization and Bayesian Statistics

    poorly to the trend of the data Overfitting, or high variance, is caused by a hypothesis function that fits the available data but does not generalize well to predict new data Feng Li (SDU) Regularization Parameter Estimation in Probabilistic Models Assume data are generated via probabilistic model d ∼ p(d; θ) p(d; θ): Probability distribution underlying the data θ: Fixed but unknown distribution parameter parameter Given: m independent and identically distributed (i.i.d.) samples of the data D = {d(i)}i=1,··· ,m Independent and Identically Distributed Given θ, each sample is independent of all other samples All
    0 码力 | 25 页 | 185.30 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    Overview of Compression One of the simplest approaches towards efficiency is compression to reduce data size. For the longest time in the history of computing, scientists have worked tirelessly towards popular example of lossless data compression algorithm is Huffman Coding, where we assign unique strings of bits (codes) to the symbols based on their frequency in the data. More frequent symbols are assigned and the path to that symbol is the bit-string assigned to it. This allows us to encode the given data in as few bits as possible, since the most frequent symbols will take the least number of bits to
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 Lecture 6: Support Vector Machine

    rule: y = sign(ωTx + b) Given: Training data {(x(i), y(i))}i=1,··· ,m Goal: Learn ω and b that achieve the maximum margin For now, assume that entire training data are correctly classified by (ω, b) Zero labels from negative labels We make more confident decision if larger margin is given, i.e., the data sample is further away from the hyperplane There exist a infinite number of hyperplanes, but which 82 SVM: The Solution Once we have the α∗, ω∗ = m � i=1 α∗ i y(i)x(i) Given ω∗, how to calculate the optimal value of b? Feng Li (SDU) SVM December 28, 2021 35 / 82 SVM: The Solution Since α∗ i
    0 码力 | 82 页 | 773.97 KB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    pX(x) , ∀y We calculate pX|Y (x | y) for ∀x, y and pY (y) for ∀y according to the given training data Fortunately, we do not have to calculate pX(x), because arg max y pY |X(y | x) = arg max y pX|Y learning from training data, but how? Feng Li (SDU) GDA, NB and EM September 27, 2023 33 / 122 Warm Up (Contd.) Given a set of training data D = {x(i), y(i)}i=1,··· ,m The training data are sampled in an an i.i.d. manner The probability of the i-th training data (x(i), y (i)) P(X = x(i), Y = y (i)) = P(X = x(i) | Y = y (i))P(Y = y (i)) = pX(x(i) | y (i))pY (y (i)) = pX|Y (x(i) | y (i))pY (y (i)) The
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    so-called margin of x0 (with respect to the hyperplane ωT x + b = 0). Now, given a set of m training data {(x(i), y(i))}i=1,··· ,m, we first assume that they are linearly separable. Specifically, there exists hyperplane actually serves as a decision boundary to differentiating positive data samples from negative data samples. Given a test data sample, we will make a more confident decision if its margin (with respect across all b∗’s b∗ = � i:α∗ i >0(y(i) − ω∗T x(i)) �m i=1 1(α∗ i > 0) In fact, most αi’s in the solution are zeros. According to complementary slackness (see Theorem 2), α∗ i [1 − y(i)(ω∗T x(i) + b∗)]
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 Lecture Notes on Gaussian Discriminant Analysis, Naive

    is given by pX|Y (x | 1) = 1 (2π)n/2|Σ|1/2 exp � −1 2(x − µ1)T Σ−1(x − µ1) � (7) Given m sample data {(x(i), y(i))}i=1,··· ,m, the log-likelihood is defined as ℓ(ψ, µ0, µ1, Σ) = log m � i=1 pX,Y (x(i) optimal values for ψ, µ0, and σ, such that the resulting GDA model can best fit the given training data. In particular, we let ∇µ0ℓ(ψ, µ0, µ1, Σ) = 0 ∇µ1ℓ(ψ, µ0, µ1, Σ) = 0 ∇Σℓ(ψ, µ0, µ1, Σ) = 0 A careful (5)∼(7), and make predictions according to Bayes’ theorem (see Eq. (2)). Specifically, given a test data featured by ˜x, we compare P(Y = ˜y | X = ˜x) = pY |X(˜y | ˜x) = p(˜x | ˜y)p(˜y) p(˜x) where ˜y
    0 码力 | 19 页 | 238.80 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    simplest questions cleverly, thereby rendering them unusually complex. One should seek the simple solution.” — Anton Pavlovich Chekhov In this chapter, we will discuss two advanced compression techniques for weight sharing. However, quantization falls behind in case the data that we are quantizing is not uniformly distributed, i.e. the data is more likely to take values in a certain range than another equally ranges (bins), regardless of the frequency of data. Clustering helps solve that problem by adapting the allocation of precision to match the distribution of the data, which ensures the decoded value deviates
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    functionality. PyTorch also includes standard defined neural network layers, deep learning optimizers, data loading utilities, and multi-gpu, and multi-node support. Functions are executed immediately instead nvcr.io/nvidia/ pytorch:-py3 Note: If you use multiprocessing for multi-threaded data loaders, the default shared memory segment size with which the container runs might not be enough To pull data and model descriptions from locations outside the container for use by PyTorch or save results to locations outside the container, mount one or more host directories as Docker® data volumes
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Linear Regression

    by ✓. Since our goal is to make predictions according to the hypothesis function given a new test data, we need to find the optimal value of ✓ such that the resulting prediction is as accurate as possible based on a given set of m training data {x(i), y(i)}i=1,··· ,m. In particular, we are supposed to find a hypothesis function (parameterized by ✓) which fits the training data as closely as possible. To measure measure the error between h✓ and the training data, we define a cost function (also called error function) J(✓) : Rn+1 ! R as follows J(✓) = 1 2 m X i=1 ⇣ h✓(x(i)) � y(i)⌘2 Our linear regression problem
    0 码力 | 6 页 | 455.98 KB | 1 年前
    3
  • pdf文档 QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野

    rights reserved. Qcon Beijing April 21, 2018 Biye Li Team Manager, Data Technologies Automation Xiangqian Yu Team Lead, Derivatives Data From Keyboards to Neural Networks 从键盘到神经网络 © 2018 Bloomberg Finance facilitate financial decision- making. 4 © 2018 Bloomberg Finance L.P. All rights reserved. What is Data Technologies Automation? Challenges – Scale of Financial Information Companies Market Types Speed vs. Federal Reserve will raise rate to 2% © 2018 Bloomberg Finance L.P. All rights reserved. Solution – Evolution Over Time 1990s patt[ern] matc[hin]g 2000s 2010 2016 2017 Modified from https://commons
    0 码力 | 64 页 | 13.45 MB | 1 年前
    3
共 75 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 8
前往
页
相关搜索词
LectureRegularizationandBayesianStatisticsEfficientDeepLearningBookEDLChapterCompressionTechniquesSupportVectorMachineGaussianDiscriminantAnalysisNaiveBayesNotesonAdvancedPyTorchReleaseLinearRegressionQCon北京2018键盘输入键盘输入神经网络神经网神经网络深度学习彭博应用李碧野
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩