积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(46)机器学习(46)

语言

全部中文(简体)(45)英语(1)

格式

全部PDF文档 PDF(46)
 
本次搜索耗时 0.056 秒,为您找到相关结果约 46 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    ,难免出现理解偏差甚 至错缪之处,若能大方指出,作者将及时修正,不胜感激。 龙良曲 2021 年 10 月 19 日 预览版202112 声 明 得益于简洁优雅的设计理念,基于动态图的 PyTorch 框架在学术圈广受好评,绝大多数 最新算法是基于 PyTorch 实现的,众多的第三方 AI 框架应用,例如 mmdetection、mmaction2、 transformer、speechbrain 深度学习 图 1.1 人工智能、机器学习、神经网络和深度学习 1.1.2 机器学习 机器学习可以分为有监督学习(Supervised Learning)、无监督学习(Unsupervised Learning)和强化学习(Reinforcement Learning,简称 RL),如图 1.2 所示。 机器学习 有监督学习 无监督学习 强化学习 图 1.2 机器学习的分类 输出逻辑 特征提取网络 (浅层) 输出子网络 底层特征提取 网络 中层特征提取 网络 高层特征提取 网络 输出子网络 基于规则的系统 传统机器学习 浅层神经网络 深度学习 图 1.3 深度学习与其它算法比较 1.2 神经网络发展简史 本书将神经网络的发展历程大致分为浅层神经网络阶段和深度学习两个阶段,以 2006 年为大致分割点。2006 年以前,深度学习
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    前向传播、反向传播和计算图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 4.7.1 前向传播 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 4.7.2 前向传播计算图 . . . 另一个是更实际的示例,我们使用深度学习框架的高级API编写简洁的代码。一旦我们教了您一些组件是如 何工作的,我们就可以在随后的教程中使用高级API了。 内容和结构 全书大致可分为三个部分,在 图1 中用不同的颜色呈现: 目录 3 图1: 全书结构 • 第一部分包括基础知识和预备知识。1节 提供深度学习的入门课程。然后在 2节 中,我们将快速介绍实 践深度学习所需的前提条件,例如如何存储和处理数据,以及如何应用基于线性代数、微积分和概率基 着用一台计算机和一个代码编辑器编写代码,如 图1.1.1中所示。问题看似很难解决:麦克风每秒钟将收集大 约44000个样本,每个样本都是声波振幅的测量值。而该测量值与唤醒词难以直接关联。那又该如何编写程 序,令其输入麦克风采集到的原始音频片段,输出{是, 否}(表示该片段是否包含唤醒词)的可靠预测呢?我 们对编写这个程序毫无头绪,这就是需要机器学习的原因。 图1.1.1: 识别唤醒词 通常,即使
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    模块、支持 GPU 训 练 torch.cuda 模块,这些都是会经常用的。 4)此外本书当中还会重点关注的 torchvison 库中的一些常见 模型库与功能函数,主要包括对象检测模块与模型库、图象数 据增强与预处理模块等。 以上并不是 pytorch 框架中全部模块与功能说明,作者这里只 列出了跟本书内容关联密切必须掌握的一些模块功能,希望读 者可以更好的针对性学习,掌握这些知识。 文件安装,显示的界面如下: 图 1-1(Python3.6.5 安装界面) 注意:图 1-1 中的矩形框,必须手动选择上“add Python3.6 to PATH”之后再点击【Install Now】默认安装完成即可。 3. 安装好 Python 语言包支持以后可以通过命令行来验证测试 安装是否成功,首先通过 cmd 打开 Window 命令行窗口,然 后输入 Python,显示如下: 图 1-2(验证 1-2(验证 Python 命令行模式) 如果显示图 1-2 所示的信息表示已经安装成功 Python 语言包 支持;如果输入 Python 之后显示信息为“'python' 不是内部 或外部命令,也不是可运行的程序”则说明第二步中没有勾选 上“add Python3.6 to PATH”,此时请手动把 python.exe 所 在路径添加到 Windows 系统的环境变量中去之后再次执行 即可。
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-02深度学习-神经网络的编程基础

    深度学习-神经网络的编程基础 黄海广 副教授 2 本章目录 01 二分类与逻辑回归 02 梯度下降 03 计算图 04 向量化 3 1.二分类与逻辑回归 02 梯度下降 01 二分类与逻辑回归 03 计算图 04 向量化 4 符号定义 ?:表示一个??维数据,为输入数 据,维度为(??, 1); ?:表示输出结果,取值为(0 ? ? + (1−?) (1−?)) ⋅ ?(1 − ?) = ? − ? ?=??? + ? 9 2.梯度下降 02 梯度下降 01 二分类与逻辑回归 03 计算图 04 向量化 10 梯度下降 ? 学习率 步长 11 梯度下降的三种形式 批量梯度下降(Batch Gradient Descent,BGD) 梯度下降的每一步中,都用到了所有的训练样本 17 3.计算图 02 梯度下降 01 二分类与逻辑回归 03 计算图 04 向量化 18 3.计算图 ? = ?? ? = 3? ? = ? + ? ? ?, ?, ? = 3(? + ??), ? = 5, ? = 3, ? = 2 ? = 5 ? = 3 ? = 2 ? 6 ? 11 ? 33 19 3.计算图 ? = ??
    0 码力 | 27 页 | 1.54 MB | 1 年前
    3
  • pdf文档 谭国富:深度学习在图像审核的应用

    深度学习在图像审核的应用 腾讯优图实验室 谭国富 http://open.youtu.qq.com SACC2017 优图团队立足于社交网络大平台,借助社交业务积累 的海量人脸、图片、音乐等数据,专注在人脸、图像、 音乐、语音、机器学习等领域开展技术研究,并积极 推动研究成果在业务中落地产生价值。 关于优图实验室 人脸识别 图像识别 音频识别 SACC2017 目录 01 腾讯优图内容审核能力介绍 业务痛点:面对越来越爆发的安全风险,解决办法门 槛高, 成本高;迫切需要技术解决方案 SACC2017 图像内容审核技术 OCR技术 图像分割以及超分辨率技术 优图图像技术还包括:图像分类、图像增强、艺术滤镜、图片去水印、图像融合、图像修补等。 图像识别技术 01 腾讯优图图像技术能力 SACC2017 内容审核 - 图片鉴黄解决方案 区分图像中的色情、性感和正常内容 DeepEye可给出图片属于色情、性感和正常 SACC2017 内容识别 – 人脸识别 l 政治敏感人物识别, 直播, 视频等场景 Ø 上亿级别的人脸检索,秒级的检索速度从黑名 单,白名单数据库中返回目标人脸信息。 Ø 技术指标:优图人脸识别通过传统方法和深度 学习技术结合,以空间面孔墙和微众银行远程 核身为基础,在性能上达到LFW 99.80%。 Ø QQ,微云等: 非法设置领导人头像, 公众人 物, 明星等等他人肖像。
    0 码力 | 32 页 | 5.17 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    我自己以为我做的事情 实际上我做的事情 10 通过这张图可以看出, 各种不同算法在输入的 数据量达到一定级数后 ,都有相近的高准确度 。于是诞生了机器学习 界的名言: 成功的机器学习应 用不是拥有最好的 算法,而是拥有最 多的数据! 数据决定一切 数据大小 准 确 率 11 深度学习-CV(计算机视觉方向) 图像获取 提取二维图像 、三维图组、 图像序列或相 关的物理数据 ,如声波、电 磁波或核磁 磁波或核磁 共振的深度、 吸收度或反射 度 预处理 对图像做一 种或一些预 处理,使图 像满足后继 处理的要 求 ,如:二次 取样保证图 像坐标的正 确,平滑、 去噪等 特征提取 从图像中提取 各种复杂度的 特征,如:线 ,边缘提取和 脊侦测,边角 检测、斑点检 测等局部化的 特征点检测 检测/分割 对图像进行分割 ,提取有价值的 内容,用于后继 处理, 如:筛 选特征点,分割 交通 自动驾驶汽车需要计算机视觉。特斯拉 (Tesla)、宝马(BMW)、沃尔沃(Volvo)和奥迪 (Audi)等汽车制造商Y已经通过摄像头、激光 雷达、雷达和超声波传感器从环境中获取图 像,研发自动驾驶汽车来探测目标、车道标 志和交通信号,从而安全驾驶。 安防 中国在使用人脸识别技术方面无疑处于领先地 位,这项技术被广泛应用于警察工作、支付识 别、机场安检,甚至在北京天坛公园分发厕
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》4-实战TensorFlow房价预测

    扫描二维码 试看/购买《TensorFlow 快速入门与实战》视频课程 • 房价预测模型介绍 • 使用 TensorFlow 实现房价预测模型 • 使用 TensorBoard 可视化模型数据流图 • 实战 TensorFlow 房价预测 第四部分 目录 房价预测模型介绍 前置知识:监督学习(Supervised Learning) 监督学习是机器学习的一种方法,指从训练数据(输入和预期输出)中学到一个模型(函数), 78305 训练数据: 假设函数: 使用 TensorFlow 实现房价预测模型 使用 TensorFlow 训练模型的工作流 数据读入 数据分析 数据 规范化 创建模型 (数据流图) 创建会话 (运行环境) 训练模型 数据分析库:Pandas Pandas 是一个 BSD 开源协议许可的,面向 Python 用户的高性能和易于上手的数 据结构化和数据分析工具。 数据框(Data 是一个基于 matplotlib的 Python 数据可视化库。它提供了更易用的高级接口,用 于绘制精美且信息丰富的统计图形。 mpl_toolkits.mplot3d 是一个基础 3D绘图(散点图、平面图、折线图等)工具集,也是 matplotlib 库的一部分。同时,它也支持轻量级的独立安装模式。 数据分析(2D) seaborn.lmplot 方法专门用于线性关系的可视化,适用于回归模型。
    0 码力 | 46 页 | 5.71 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入

    完全不用重复和卷积,因而这些模型在质量上更优,同时更易于并行化,并 且需要的训练时间明显更少。 ✓ Transformer出现以后,迅速取代了RNN系列变种,跻身主流模型架构基 础。(RNN缺陷正在于流水线式的顺序计算) 图:Transformer模型架构 33 首先通过词嵌入(Word Embedding)将字、词、 句进行区分,然后基于特征评分、序列标注、 分类模型等提取内容特征计算相关文本单元权 重其次洗择相应的文本单元子集组成摘要候洗 任务)、双向Transformer+Mask的自编码系列(例如BERT, 偏好自然语言理解)、Encoder-decoder架构(例如T5,使用双向/单向attention,偏好条件文本生成) 图:Transformer典型技术场景下的原理介绍如下所述 Transformer 34 GPT-1:借助预训练,进行无监督训练和有监督微调 ◼ GPT-1模型基于Transformer解除了顺 模型的生成性预训练,然后对每个特定任务 进行区分性微调,可以实现这些任务上的巨大收益。和之前方法不同,GPT在微调期间使用任务感知输入转换,以实现有效的传输, 同时对模型架构的更改最小。 图:GPT-1模型的核心手段是预训练(Pre-training) 无监督预训练 (Unsupervised pre-training) 不需要标注数据集,即大规 模自学阶段,在保证AI算力 充足的条件下,根据
    0 码力 | 44 页 | 2.36 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-机器学习项目流程

    •简而言之,EDA的目标是确定我们的数据可以告诉我们什么! 探索性数据分析(EDA) 11 探索性数据分析(EDA) 单变量图显示此变量的分布 plt.hist()可以显示单变量图,也叫 直方图 12 探索性数据分析(EDA) boxplot :箱型图又称为盒须图、盒式图或箱线图,是一种用作显示一组数据分散情 况资料的统计图。它能显示出一组数据的最大值、最小值、中位数及上下四分位数。 13 探索性数据分析(EDA) 为了查看分类变量 - categorical variables对分数的影 响,我们可以通过分类变量的值来绘制密度图。 密度图 还显示单个变量的分布,可以认为是平滑的直方图。 如 果我们通过为分类变量密度曲线着色,这将向我们展示 分布如何基于类别变化的。 15 探索性数据分析(EDA) 这幅图我们可以看到建筑类型对 Energy Star Score有重大影 响。 办公楼往往有较高的分数,
    0 码力 | 26 页 | 1.53 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    机器学习的背景知识-Python基础 51 Python 的环境的安装 ⚫Anaconda https://www.anaconda.com/distribution/ 通常选3.7版本,64位 可以用默认安装,右图两个选择框都勾上 52 Python 的环境的安装 ⚫Jupyter notebook 在cmd环境下,切换到代码的 目录,输入命令: jupyter notebook之后就可以 启动jupyter 绘图,直方图,功率谱,条形 图,错误图,散点图等。 https://matplotlib.org/gallery/index.html 70 Python模块-Matplotlib 图形的各元素名称如下: 绘图框 是图形的最高容器,所 有图形必须放置在绘图框中. 子图 是绘图框中所包含的图形 ,即便绘图框只包含一幅图,也 称之为子图. 元素 是组成子图的部件,从子 图最内部的数据线条到外围的坐 图最内部的数据线条到外围的坐 标轴标签等都属于元素 71 Python模块-Matplotlib 图 形 样 式 72 4. 机器学习的开发流程 01 机器学习概述 02 机器学习的类型 03 机器学习的背景知识 04 机器学习的开发流程 73 机器学习的一般步骤 74 机器学习的一般步骤 数据搜集 数据清洗 特征工程 数据建模 75 不同视角的机器学习 朋友以为我做的事情
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
共 46 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
PyTorch深度学习动手深度学习v2OpenVINO开发实战系列教程第一一篇第一篇机器课程温州大学02神经网络神经网神经网络编程基础国富图像审核应用01引言TensorFlow快速入门房价预测12自然语言自然语言处理嵌入项目流程
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩