积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(19)机器学习(19)

语言

全部英语(14)中文(简体)(5)

格式

全部PDF文档 PDF(19)
 
本次搜索耗时 0.079 秒,为您找到相关结果约 19 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 动手学深度学习 v2.0

    3,其中系数2是切线的斜率。 x = np.arange(0, 3, 0.1) plot(x, [f(x), 2 * x - 3], 'x', 'f(x)', legend=['f(x)', 'Tangent line (x=1)']) 2.4. 微积分 67 2.4.2 偏导数 到目前为止,我们只讨论了仅含一个变量的函数的微分。在深度学习中,函数通常依赖于许多变量。因此,我 们需要将微分的思想推广到多元函数(multivariate 成32位浮点数格式, # 并除以255使得所有像素的数值均在0~1之间 trans = transforms.ToTensor() mnist_train = torchvision.datasets.FashionMNIST( root="../data", train=True, transform=trans, download=True) mnist_test = torchvision torchvision.datasets.FashionMNIST( root="../data", train=False, transform=trans, download=True) 53 https://discuss.d2l.ai/t/1785 3.5. 图像分类数据集 111 Fashion‐MNIST由10个类别的图像组成,每个类别由训练数据集(train dataset)中的6000张图像和测试数据
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-06机器学习-KNN算法

    北京: 清华大学出版社,2016. [4] Cover T M , Hart P E . Nearest neighbor pattern classification[J]. IEEE Trans.inf.theory, 1953, 13(1):21-27. [5] Hastie T., Tibshirani R., Friedman J. The Elements of Statistical
    0 码力 | 26 页 | 1.60 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    0.0)) # 绘制权值矩阵范围 surf = ax.plot_surface(X, Y, weights, cmap=plt.get_cmap('rainbow'), line width=0) # 设置坐标轴名 ax.set_xlabel('网格 x 坐标', fontsize=16, rotation = 0) ax.set_ylabel('网格 step(action) # 构建样本并存储 trans = Transition(state, action, action_prob, reward, next_stat e) agent.store_transition(trans) state = next_state # 刷新状态 learning,” Machine Learning, 卷 8, pp. 229-256, 01 5 1992. [5] G. A. Rummery 和 M. Niranjan, “On-Line Q-Learning Using Connectionist Systems,” 1994. [6] H. Hasselt, A. Guez 和 D. Silver, “Deep Reinforcement
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 keras tutorial

    Where,  Line 1 imports Sequential model from Keras models  Line 2 imports Dense layer and Activation module  Line 4 create a new sequential model using Sequential API  Line 5 adds a dense  Line 1 imports Sequential model from Keras models  Line 2 imports Dense layer, Dropout layer and Activation module  Line 4 create a new sequential model using Sequential API  Line 5 adds function.  Line 6 adds a dropout layer (Dropout API) to handle over-fitting.  Line 7 adds another dense layer (Dense API) with relu activation (using Activation module) function.  Line 8 adds another
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    one of the following commands: ‣ --ipc=host ‣ --shm-size= in the command line to docker run --gpus all To pull data and model descriptions from locations outside the container TensorRT integration for PyTorch and brings the capabilities of TensorRT directly to Torch in one line Python and C++ APIs. ‣ Starting with the 22.05 release, the PyTorch container is available for the TensorRT integration for PyTorch and brings the capabilities of TensorRT directly to Torch in one line Python and C++ APIs. ‣ Starting with the 22.05 release, the PyTorch container is available for the
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Gaussian Discriminant Analysis, Naive

    Expectation-Maximization (EM) algorithm. 6.1 Convex Sets and Convex Functions A set C is convex if the line segment between any two points in C lies in C, i.e., for ∀x1, x2 ∈ C and ∀θ with 0 ≤ θ ≤ 1, we have we have the inequality in the fifth line. The sixth equality also comes from Eq. (31) 13 To tighten the lower bound, we should let the equality (in the forth line) hold. According to Jensen’s inequality in particular holds for Qi = Q[t] i , according to Eq. (32). We have the inequality in the second line, because θ[t+1] is calculated by θ[t+1] = arg max θ � i � z(i)∈Ω Q[t] i (z(i)) log p(x(i), z(i);
    0 码力 | 19 页 | 238.80 KB | 1 年前
    3
  • pdf文档 如何利用深度学习提高高精地图生产的自动化率-邹亮

    �������������� ���� ���� ������(Lane line Detection) �� ���)�)�(� ����&���&��,���,� ������� �������� �� ���&�&��&� �&��,��� ����&����&��,���,� ������(Lane line Detection) g�R������f A��������) S�e�����)��������)��� Oc��������(����������������������)��������������� �����U���a�S�PeF ������(Lane line Detection)��� �������� (Sign Detection, Traffic Light Detection) �� ���������� �������� (Sign Detection
    0 码力 | 34 页 | 56.04 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    gi(ω∗) = 0 for ∀i = 1, 2, · · · , k. Another observation is that, since the inequality in the third line holds with equality, ω∗ actually minimizes L(ω, α∗, β ∗) over ω. 2.2.3 Karush-Kuhn-Tucker (KKT) Conditions following, we take α1 and α2 for example to explain the optimization process of the SMO algorithm (i.e., Line 4 in Algorithm 1). By treating α1 and α2 as variables while the others as known quantities, the objective ?! + ?! (b) y(1)y(2) = 1 Figure 7: α+ 1 and α+ 2 . which confines the optimization to be on a line. Since 0 ≤ α1, α2 ≤ C, we can derive a lower bound L and an upper bound H for them. As shown in Fig
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    rank0_print("Loading data...") train_data = [] with open(data_args.data_path, "r") as f: for line in f: train_data.append(json.loads(line)) train_dataset = dataset_cls(train_data, tokenizer=tokenizer, max_len=max_len) eval_data_path: eval_data = [] with open(data_args.eval_data_path, "r") as f: for line in f: eval_data.append(json.loads(line)) eval_dataset = dataset_cls(eval_data, tokenizer=tokenizer, max_len=max_len)
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    ile(path): while 1: f = open(path) for line in f: # create Numpy arrays of input data # and labels, from each line in the file x, y = process_line(line) yield (x, y) 模型 47 f.close() model.fi generate_arrays_from_file(path): while 1: f = open(path) for line in f: # 从文件中的每一行生成输入数据和标签的 numpy 数组, x1, x2, y = process_line(line) yield ({'input_1': x1, 'input_2': x2}, {'output': y}) f.close() 20.7 print_summary keras.utils.print_summary(model, line_length=None, positions=None, print_fn=None) 打印模型概况。 参数 • model: Keras 模型实例。 • line_length: 打印的每行的总长度 (例如,设置此项以使其显示适应不同的终端窗口大小)。 • positions:
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
共 19 条
  • 1
  • 2
前往
页
相关搜索词
动手深度学习v2机器课程温州大学06KNN算法PyTorch深度学习kerastutorialReleaseNotesLectureonGaussianDiscriminantAnalysisNaive如何利用提高高精地图生产自动自动化邹亮SupportVectorMachineAI模型千问qwen中文文档Keras基于Python
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩