积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(14)机器学习(14)

语言

全部英语(11)中文(简体)(3)

格式

全部PDF文档 PDF(14)
 
本次搜索耗时 0.022 秒,为您找到相关结果约 14 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    Illustrated Word2vec - https://jalammar.github.io/illustrated-word2vec/ The nifty embedding projector tool visualizes embeddings in three dimensions and enables to see which embeddings lie close to a given the sanity check. You can further play with this tool to visualize the embeddings for different words. Figure 4-10: Using the embedding projector tool to visualize the word2vec embeddings in 3-D. Now you as an exercise. Tell us how well it works! Summary This chapter was focussed on two different sets of architectures. The first set of architectures which includes embeddings and attention leverage
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 keras tutorial

    this approach, we can process huge amount of features, which makes deep learning a very powerful tool. Deep learning algorithms are also useful for the analysis of unstructured data. Let us go through self.output_dim = output_dim super(MyCustomLayer, self).__init__(**kwargs) Here,  Line 2 sets the output dimension.  Line 3 calls the base or super layer’s init function. Step 4: Implement
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    The oxford_flowers102 dataset contains 1020 labeled examples each in the training and the validation sets. It is a small sample to train a good quality model. So, we use a pre-trained ResNet50 model and fine The code is available here as a Jupyter notebook for you to experiment. The following code snippet sets up the modules, functions and variables that will be used later on. It initializes the Natural Language project, we start with setting up the required libraries, and loading the training and validation sets. We leverage the nlpaug library to perform the augmentations. It provides a simple 5 Maas, Andrew
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Lecture 7: K-Means

    observations X = {x1, x2, · · · , xN} (xi ∈ RD), partition the N observations into K sets (K ≤ N) {Ck}k=1,··· ,K such that the sets minimize the within-cluster sum of squares: arg min {Ck} K � i=1 � x∈Ci
    0 码力 | 46 页 | 9.78 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    next section. A Mental Model of Efficient Deep Learning Before we dive deeper, let’s visualize two sets of closely connected metrics that we care about. First, we have quality metrics like accuracy, precision network. Avoiding over-parameterization further helps in making the networks more robust. Within these sets of techniques, we would look at layers and architectures that have been designed specifically with
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    capable of natural language understanding, text generation, vision understanding, audio understanding, tool use, role play, playing as AI agent, etc. 最新版本 Qwen1.5 有以下特点: • 6 种模型规模,包括 0.5B、1.8B、4B、7B、14B 和 { "from": "gpt", "value": "model response" } ], "system": "system prompt (optional)", "tools": "tool description (optional)" } ] 2. 在 data/dataset_info.json 文件中提供您的数据集定义,并采用以下格式: 1.12. 有监督微调 35 Qwen parse from qwen_agent.agents import Assistant from qwen_agent.tools.base import BaseTool, register_tool llm_cfg = { # Use the model service provided by DashScope: 'model': 'qwen-max', 'model_server':
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    choosing values for hyperparameters that lead to an optimal model. HPO performs trials with different sets of hyperparameters using the model as a blackbox. The set which performs the best is chosen for full now ready to start the search. The search() method of tuner takes the training and the validation sets to run the search. tds = train_ds.batch(32) vds = val_ds.batch(256) tuner.search(tds, validation_data=vds)
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 32. Train-Val-Test-交叉验证

    K-fold cross-validation Train Set Test Set Val Set k-fold cross validation ▪ merge train/val sets ▪ randomly sample 1/k as val set 下一课时 减轻Overfitting Thank You.
    0 码力 | 13 页 | 1.10 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Gaussian Discriminant Analysis, Naive

    Expectation-Maximization Algorithm We hereby look at Expectation-Maximization (EM) algorithm. 6.1 Convex Sets and Convex Functions A set C is convex if the line segment between any two points in C lies in C
    0 码力 | 19 页 | 238.80 KB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    j=1 pj(xj | y) Feng Li (SDU) GDA, NB and EM September 27, 2023 65 / 122 Naive Bayes (Contd.) Two sets of parameters (denoted by Ω) Probability mass function of Y p(y) = P(Y = y) where ∀y ∈ {0, 1} Conditional
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterArchitectureskerastutorialTechniquesLectureMeansIntroductionAI模型千问qwen中文文档Automation深度学习PyTorch入门实战32TrainValTest交叉验证NotesonGaussianDiscriminantAnalysisNaiveBayes
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩