积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)机器学习(13)

语言

全部英语(11)中文(简体)(2)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.027 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    them in the same breadth as efficiency? To answer this question, let’s break down the two prominent ways to benchmark the model in the training phase namely sample efficiency and label efficiency. Sample workflow of such a device. The model continuously classifies audio signals into one of the four classes, three of which are the keywords that the device will accept: hello, weather and time. The fourth class (none) Figure 3-4: Workflow of a home-automation device which detects three spoken words: hello weather and time. The output is none when none of the three acceptable words are detected. Now, let’s say that the
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    that we have presented a general algorithm for pruning, we should go over some examples of different ways we implement them. Concretely, a practitioner might want to experiment with at least the following layer, in proportion to the mean magnitude of momentum of weights in that layer. There might be other ways of computing saliency scores, but they will all try to approximate the importance of a given weight Networks8" proposed a three step approach for pruning. The three steps are: Train Connectivity, Prune Connections, and Train Weights. The algorithm in figure 5-2 is based on these three steps. Their approach
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    in reverse order in contrast to the example in table 7-1. The tuner runs a total of 30 trials in three brackets. The maximum number of epochs for any trial is 10. The trial in bracket 2 reaches the best 7-X for BOS, it took 16 runs to converge to the optimum hyperparameters. However, there are other ways to make BOS run quicker by using smaller datasets, early stopping or low resolution inputs etc. Early AmoebaNet-A after the evolution search. In comparison to the NASNet, the normal AmoebaNet-A cell has three layers. NASNet and AmoebaNet demonstrated comparable 8 Real, Esteban, et al. "Regularized evolution
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    practical applications! Efficient Architectures aim to improve model deployability by proposing novel ways to reduce model footprint and improve inference efficiency while preserving the problem solving capabilities model for the task at hand5 with the embeddings as input. Refer to Figure 4-4 that describes the three steps visually. Figure 4-4: A high-level visualization of the embedding-based model training lifecycle https://jalammar.github.io/illustrated-word2vec/ The nifty embedding projector tool visualizes embeddings in three dimensions and enables to see which embeddings lie close to a given input. This can be useful to verify
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 keras tutorial

    2  Deep learning models are discrete components, so that, you can combine into many ways. Keras 3 This chapter explains about how to install Keras on your machine. Before series of convolution layer and pooling layer before the fully connected hidden neuron layer. It has three important layers:  Convolution layer: It is the primary building block and perform computational Keras helps in deep learning in this chapter. Architecture of Keras Keras API can be divided into three main categories:  Model  Layer  Core Modules In Keras, every ANN is represented by Keras
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    through the native implementation. AMP enables users to try mixed precision training by adding only three lines of Python to an existing FP32 (default) script. AMP will select an optimal set of operations a preinstalled release of Apex. AMP enables users to try mixed precision training by adding only three lines of Python to an existing FP32 (default) script. AMP will select an optimal set of operations a preinstalled release of Apex. AMP enables users to try mixed precision training by adding only three lines of Python to an existing FP32 (default) script. AMP will select an optimal set of operations
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Experiment 6: K-Means

    below. In a straightforward 24-bit color representation of this image, each pixel is represented as three 8-bit numbers (ranging from 0 to 255) that specify red, green and blue intensity values. Our bird the following command: A = double ( imread ( ’ b i r d s m a l l . t i f f ’ ) ) ; This creates a three-dimensional matrix A whose first two indices identify a pixel position and whose last index represents task is to compute 16 cluster centroids from this image, with each centroid being a vector of length three that holds a set of RGB values. Here is the K-means algorithm as it applies to this problem: 3.1
    0 码力 | 3 页 | 605.46 KB | 1 年前
    3
  • pdf文档 Lecture 4: Regularization and Bayesian Statistics

    from the same distribution Goal: Estimate parameter θ that best models/describes the data Several ways to define the “best” Feng Li (SDU) Regularization and Bayesian Statistics September 20, 2023 12 /
    0 码力 | 25 页 | 185.30 KB | 1 年前
    3
  • pdf文档 亚马逊AWSAI Services Overview

    environment  Take Action  Achieve Reward  Repeat. Goal is to maximize rewards over time. • There are three interfaces: • getInitState() for initialization • getAction() • setPerception(nextObservation,action
    0 码力 | 56 页 | 4.97 MB | 1 年前
    3
  • pdf文档 Experiment 1: Linear Regression

    gradient descent multiple times with a hold on command between plots. Concretely, if you’ve tried three different values of alpha (you should probably try more values than this) and stored the costs in
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterTechniquesAdvancedCompressionAutomationArchitectureskerastutorialPyTorchReleaseNotesExperimentMeansLectureRegularizationandBayesianStatistics亚马亚马逊AWSAIServicesOverviewLinearRegression
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩