积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(4)机器学习(4)

语言

全部中文(简体)(3)英语(1)

格式

全部PDF文档 PDF(4)
 
本次搜索耗时 0.033 秒,为您找到相关结果约 4 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 机器学习课程-温州大学-08机器学习-集成学习

    3.5 4.5 5.5 6.5 7.5 8.5 9.5 m(s) 15.72 12.07 8.36 5.78 3.91 1.93 8.01 11.73 15.74 x y 1 5.56 2 5.7 3 5.91 4 6.4 5 6.8 6 7.05 7 8.9 8 8.7 9 9 10 9.05 GBDT算法 22 ? = 6.5,?1 = 1,2 … 6 , ?2 = = x<3.5 -0.52 0.22 ? ?, ?2 ? = ෍ ?=1 10 (?? − ?2(??))2 = 0.79 x y y-f(x) 1 5.56 -0.68 2 5.7 -0.54 3 5.91 -0.33 4 6.4 0.16 5 6.8 0.56 6 7.05 0.81 7 8.9 -0.01 8 8.7 -0.21 9 9 0.09 10 9
    0 码力 | 50 页 | 2.03 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-11深度学习-序列模型

    第一句话的概率是: ?(The apple and pair salad) = 3.2 × 10−13, 而第二句话的概率是: ? The apple and pear salad = 5.7 × 10−10, 15 03 长短期记忆(LSTM) 04 双向循环神经网络 3.长短期记忆(LSTM) 01 序列模型概述 02 循环神经网络(RNN)
    0 码力 | 29 页 | 1.68 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    11 参考文献 第 5 章 PyTorch 进阶 5.1 合并与分割 5.2 数据统计 5.3 张量比较 5.4 填充与复制 5.5 数据限幅 5.6 高级操作 5.7 经典数据集加载 5.8 MNIST 测试实战 5.9 参考文献 第 6 章 神经网络 6.1 感知机 6.2 全连接层 6.3 神经网络 6.4 激活函数 6 肯定的,meshgrid 函数即可实现。 图 5.5 Sinc 函数 通过在 x 轴上进行采样 100 个数据点,y 轴上采样 100 个数据点,然后利用 预览版202112 5.7 经典数据集加载 27 torch.meshgrid(x, y)即可返回这 10000 个数据点的张量数据,保存在 shape 为[100,100,2]的 张量中。为了方便计算,torch 坐标轴 # 根据网格点绘制 sinc 函数 3D 曲面 ax.contour3D(x.numpy(), y.numpy(), z.numpy(), 50) plt.show() 5.7 经典数据集加载 到这里为止,已经学习完张量的常用操作方法,已具备实现大部分深度网络的技术储 备。最后我们将以一个完整的张量方式实现的分类网络模型实战收尾本章。在进入实战之 前,先来正式介绍对于常用的经典数据集,如何利用
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . 100 5.6.11 CuDNNLSTM [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.7 嵌入层 Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.7.1 Embedding • stateful: 布尔值 (默认 False)。如果为 True,则批次中索引 i 处的每个样品的最后状态将用 作下一批次中索引 i 样品的初始状态。 关于 KERAS 网络层 103 5.7 嵌入层 Embedding 5.7.1 Embedding [source] keras.layers.Embedding(input_dim, output_dim, embeddings_
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
共 4 条
  • 1
前往
页
相关搜索词
机器学习课程温州大学08集成11深度序列模型PyTorch深度学习Keras基于Python
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩