 PyTorch Release Notes(resulting in a 2X speedup for bandwidth-bound operations like most pointwise ops) and 2X reduced memory storage for intermediates (reducing the overall memory consumption of your model). Additionally, GEMMs and process group for the distributed backend. Users can experiment with it by creating UCC as the default process group via: torch.distributed.init_process_group(backend="ucc", kwargs) or a side process group with any default via: torch.distributed.init_process_group(backend=any_backend, default_pg_kwargs) ucc_pg = torch.distributed.new_group(backend="ucc", ucc_pg_kwargs) Announcements ‣ Starting with the0 码力 | 365 页 | 2.94 MB | 1 年前3 PyTorch Release Notes(resulting in a 2X speedup for bandwidth-bound operations like most pointwise ops) and 2X reduced memory storage for intermediates (reducing the overall memory consumption of your model). Additionally, GEMMs and process group for the distributed backend. Users can experiment with it by creating UCC as the default process group via: torch.distributed.init_process_group(backend="ucc", kwargs) or a side process group with any default via: torch.distributed.init_process_group(backend=any_backend, default_pg_kwargs) ucc_pg = torch.distributed.new_group(backend="ucc", ucc_pg_kwargs) Announcements ‣ Starting with the0 码力 | 365 页 | 2.94 MB | 1 年前3
 keras tutorial................................................................................ 7 3. Keras ― Backend Configuration .................................................................................. .......................................................................................... 20 backend module ......................................................................................... get module not found error message. Keras 9 This chapter explains Keras backend implementations TensorFlow and Theano in detail. Let us go through each implementation one by one0 码力 | 98 页 | 1.57 MB | 1 年前3 keras tutorial................................................................................ 7 3. Keras ― Backend Configuration .................................................................................. .......................................................................................... 20 backend module ......................................................................................... get module not found error message. Keras 9 This chapter explains Keras backend implementations TensorFlow and Theano in detail. Let us go through each implementation one by one0 码力 | 98 页 | 1.57 MB | 1 年前3
 AI大模型千问 qwen 中文文档Example dummy function hard coded to return the same weather # In production, this could be your backend API or an external API def get_current_weather(location, unit='fahrenheit'): """Get the current StorageContext, load_index_from_storage # save index storage_context = StorageContext.from_defaults(persist_dir="save") # load index index = load_index_from_storage(storage_context) 1.15.4 检索增强(RAG) 现在您可以输入查询,Qwen10 码力 | 56 页 | 835.78 KB | 1 年前3 AI大模型千问 qwen 中文文档Example dummy function hard coded to return the same weather # In production, this could be your backend API or an external API def get_current_weather(location, unit='fahrenheit'): """Get the current StorageContext, load_index_from_storage # save index storage_context = StorageContext.from_defaults(persist_dir="save") # load index index = load_index_from_storage(storage_context) 1.15.4 检索增强(RAG) 现在您可以输入查询,Qwen10 码力 | 56 页 | 835.78 KB | 1 年前3
 Keras: 基于 Python 的深度学习库9 NASNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 14 后端 Backend 171 14.1 什么是「后端」? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 metrics=['accuracy']) # 均方误差回归问题 model.compile(optimizer='rmsprop', loss='mse') # 自定义评估标准函数 import keras.backend as K def mean_pred(y_true, y_pred): return K.mean(y_pred) model.compile(optimizer='rmsprop', intermediate_layer_model.predict(data) 或者,你也可以构建一个 Keras 函数,该函数将在给定输入的情况下返回某个层的输出,例 如: from keras import backend as K # 以 Sequential 模型为例 get_3rd_layer_output = K.function([model.layers[0].input], [model.layers[3]0 码力 | 257 页 | 1.19 MB | 1 年前3 Keras: 基于 Python 的深度学习库9 NASNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 14 后端 Backend 171 14.1 什么是「后端」? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 metrics=['accuracy']) # 均方误差回归问题 model.compile(optimizer='rmsprop', loss='mse') # 自定义评估标准函数 import keras.backend as K def mean_pred(y_true, y_pred): return K.mean(y_pred) model.compile(optimizer='rmsprop', intermediate_layer_model.predict(data) 或者,你也可以构建一个 Keras 函数,该函数将在给定输入的情况下返回某个层的输出,例 如: from keras import backend as K # 以 Sequential 模型为例 get_3rd_layer_output = K.function([model.layers[0].input], [model.layers[3]0 码力 | 257 页 | 1.19 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniquesexercises, we worked out the logic to quantize a high precision vector to low precision to save storage space and the transmission bandwidth. Let’s say a receiver received this data. How would it decode in the number of quantization bits. Quantization is a useful technique in the situation where the storage space or the transmission bandwidth is expensive like deep learning models on mobile devices. Mobile stored in an N-dimensional matrix (tensor), and the weight matrix W is most expensive in terms of storage. Can we efficiently represent this weight matrix W to reduce the model size? We already have worked0 码力 | 33 页 | 1.96 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniquesexercises, we worked out the logic to quantize a high precision vector to low precision to save storage space and the transmission bandwidth. Let’s say a receiver received this data. How would it decode in the number of quantization bits. Quantization is a useful technique in the situation where the storage space or the transmission bandwidth is expensive like deep learning models on mobile devices. Mobile stored in an N-dimensional matrix (tensor), and the weight matrix W is most expensive in terms of storage. Can we efficiently represent this weight matrix W to reduce the model size? We already have worked0 码力 | 33 页 | 1.96 MB | 1 年前3
 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱存储/更新 百TB数据 分⽚训练 Feature 1: 动态空间 Feature 2.1:短时间内只有部分item和user 被命中,只有部分参数被⽤到 参数按需 获取/更新 Storage 异步训练流⽔线和多级存储:提升性能,降低内存成本 � 问题: � Learner线程中参数拉取和参数更新对性能影响⼤ � 内存成为主要资源瓶颈。由于需要等待全部参数 就绪,Parameter 效果: � 在不影响训练效果的情况下,降低参数准备与更新耗时,提 ⾼训练速度。训练耗时下降超50% � 异步storage线程,⽀持基于冷热数据的多级存储。内存消 耗下降30%-70% 磁盘 训练 Lookup+ pooling 算⼦融合 Unique keys Storage 近期训练 参数管理 需保持顺 序,以保证 训练效果 样本读取 样本解析 基于GPU的多级存储训练:更⾼的性价⽐0 码力 | 22 页 | 6.76 MB | 1 年前3 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱存储/更新 百TB数据 分⽚训练 Feature 1: 动态空间 Feature 2.1:短时间内只有部分item和user 被命中,只有部分参数被⽤到 参数按需 获取/更新 Storage 异步训练流⽔线和多级存储:提升性能,降低内存成本 � 问题: � Learner线程中参数拉取和参数更新对性能影响⼤ � 内存成为主要资源瓶颈。由于需要等待全部参数 就绪,Parameter 效果: � 在不影响训练效果的情况下,降低参数准备与更新耗时,提 ⾼训练速度。训练耗时下降超50% � 异步storage线程,⽀持基于冷热数据的多级存储。内存消 耗下降30%-70% 磁盘 训练 Lookup+ pooling 算⼦融合 Unique keys Storage 近期训练 参数管理 需保持顺 序,以保证 训练效果 样本读取 样本解析 基于GPU的多级存储训练:更⾼的性价⽐0 码力 | 22 页 | 6.76 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniquesyour deep learning models. We start with sparsity. If your goal was to optimize your brain for storage, you can often trim a lot of useless trivia without it impacting your life materially. This is also picking the connections and nodes to prune, and how to prune a given deep learning model to achieve storage and latency gains with a minimal performance tradeoff. Next, the chapter goes over weight sharing Sparse compressed models achieve higher compression ratio which results in lower transmission and storage costs. Figure 5-1 visually depicts two networks. The one on the left is the original network and0 码力 | 34 页 | 3.18 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniquesyour deep learning models. We start with sparsity. If your goal was to optimize your brain for storage, you can often trim a lot of useless trivia without it impacting your life materially. This is also picking the connections and nodes to prune, and how to prune a given deep learning model to achieve storage and latency gains with a minimal performance tradeoff. Next, the chapter goes over weight sharing Sparse compressed models achieve higher compression ratio which results in lower transmission and storage costs. Figure 5-1 visually depicts two networks. The one on the left is the original network and0 码力 | 34 页 | 3.18 MB | 1 年前3
 构建基于富媒体大数据的弹性深度学习计算平台推理服务 数据抽样 和整理 样本 训练 模型 模型评估 AVA深度学习平台 Caching IO Distributed System Docker Orchestration Storage HDFS SQL NoSQL Caffe MXNet Tensorflow Data Clean Iterative training Semi-supervised Labeling0 码力 | 21 页 | 1.71 MB | 1 年前3 构建基于富媒体大数据的弹性深度学习计算平台推理服务 数据抽样 和整理 样本 训练 模型 模型评估 AVA深度学习平台 Caching IO Distributed System Docker Orchestration Storage HDFS SQL NoSQL Caffe MXNet Tensorflow Data Clean Iterative training Semi-supervised Labeling0 码力 | 21 页 | 1.71 MB | 1 年前3
 人工智能发展史ence/ http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf ▪ 2015 https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf AlphaZero http://www.iro.umontreal.ca/~vi0 码力 | 54 页 | 3.87 MB | 1 年前3 人工智能发展史ence/ http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf ▪ 2015 https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf AlphaZero http://www.iro.umontreal.ca/~vi0 码力 | 54 页 | 3.87 MB | 1 年前3
 全连接神经网络实战. pytorch 版any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, without the prior written permission of the publisher. Art. No 0 ISBN 000–00–0000–00–00 码力 | 29 页 | 1.40 MB | 1 年前3 全连接神经网络实战. pytorch 版any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, without the prior written permission of the publisher. Art. No 0 ISBN 000–00–0000–00–00 码力 | 29 页 | 1.40 MB | 1 年前3
共 14 条
- 1
- 2













