积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(9)机器学习(9)

语言

全部英语(6)中文(简体)(3)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.063 秒,为您找到相关结果约 9 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lecture 1: Overview

    2023 16 / 57 Applications of Machine Learning (Contd.) Cancer Diagnosis Given data on expression levels of genes, classify the type of tumor. Discover categories of tumors having different characteristics blood pressure of a patient, etc. To make predictions, we have various inputs, Gene expression levels for predicting tumor type, age and income for predicting amount spent, the features of images with
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    sparsified weight matrices (zero-d weights are dark) each with 33% sparsity at various granularity levels. It shows the parameter layout for a convolutional layer which receives a 3-channel input. Each individual of the pruned weights again, the regrowth step attempts to align the loss value to the pre-pruning levels. The regrowth step, in some cases, also redistributes the lost weight across layers such that the
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    configuration left. An intuitive way to think about it is to imagine a multiplayer game with multiple levels where a few best performing players are promoted to the next level until we have a winner. There
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    subset of training data earlier in the training than the rest. Training examples might have different levels of hardness depending on how informative the features are. 17 Lukasik, Michal, et al. "ICML'20:
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    with efficient self-attention mechanisms. These ideas tackle the quadratic complexity at various levels. The simplest idea is to chunk the input sequence of length n into blocks of length b where b <<<
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 华为云深度学习在文本分类中的实践-李明磊

    tokenizer word2vec Elmo pb ckpt H5 (Keras) RESTful API RPC API Function test Concurrence test Security test Multi class Multi label preprocessor Traditional --->simple Char replacement Synonym
    0 码力 | 23 页 | 1.80 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    0 through v1.2.1 exposes a Regular Expression Denial of Service (ReDOS) vulnerability. ‣ Known security vulnerabilities: ‣ CVE-2022-32212, CVE-2022-43548, CVE-2023-0286, CVE-2022-32223, CVE-2023-0286 0 through v1.2.1 exposes a Regular Expression Denial of Service (ReDOS) vulnerability. ‣ Known security vulnerabilities: ‣ CVE-2022-25882 for ONNX<1.13.0 PyTorch RN-08516-001_v23.07 | 61 Chapter Tacotron2 inference performance regression of up to 15% for workloads using dynamic input shapes. Security CVEs ‣ CVE-2022-45198 - Pillow before 9.2.0 performs Improper Handling of Highly Compressed GIF
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    shape), 25, alpha = 1, cmap=cm.Spectral) plt.contour(XX, YY, preds.reshape(XX.shape), levels=[.5], cmap="Greys", vmin=0, vmax=.6) # 绘制散点图,根据标签区分颜色 plt.scatter(X[:, 0], X[:, 1] cmap=cm.Spectral) plt.contour(XX, YY, preds.reshape(XX.shape), levels=[.5], cmap="Greys", vmin=0, vmax=.6) # 绘制正负样本 markers = ['o'
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    ,如 图16.3.6顶部所示。在本例中,我 们保留“3. Configure Instance”(3. 配置实例)、“5. Add Tags”(5. 添加标签)和“6. Configure Security Group”(6. 配置安全组)步骤的默认配置。点击“4.添加存储”并将默认硬盘大小增加到64GB( 图16.3.6中 的红色框标记)。请注意,CUDA本身已经占用了4GB空间。 图16
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
共 9 条
  • 1
前往
页
相关搜索词
LectureOverviewEfficientDeepLearningBookEDLChapterAdvancedCompressionTechniquesAutomationTechnicalReviewArchitectures华为深度学习文本分类实践李明磊PyTorchReleaseNotes深度学习动手v2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩