Keras: 基于 Python 的深度学习库3.8 fit_generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.3.9 evaluate_generator . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2.3.10 predict_generator . . . . 3.8 fit_generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.3.9 evaluate_generator . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3.3.10 predict_generator . . . . 进行批量训练 与测试。请参阅 模型文档。 或 者, 你 可 以 编 写 一 个 生 成 批 处 理 训 练 数 据 的 生 成 器, 然 后 使 用 model.fit_generator(data_generator,steps_per_epoch,epochs) 方法。 你可以在 CIFAR10 example 中找到实践代码。 3.3.10 在验证集的误差不再下降时,如何中断训练?0 码力 | 257 页 | 1.19 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquesachieves a higher accuracy with the same number of labeled training examples. Data Augmentation is a set of techniques which leverage the original training data to generate more training examples without workflows. We start with data augmentation in the next section. Data Augmentation Data Augmentation is a set of dataset manipulation techniques to improve sample and label efficiencies of deep learning models we can kick-off the training process. The train() is simple. It takes the model, training set and validation set as parameters. It also has two hyperparameters: batch_size and epochs. We use a small batch0 码力 | 56 页 | 18.93 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112预览版202112 第 3 章 分类问题 2 集共 70000 张图片。其中 60000 张图片作为训练集?train(Training Set),用来训练模型,剩 下 10000 张图片作为测试集?test(Test Set),用来预测或者测试,训练集和测试集共同组成 了整个 MNIST 数据集。 考虑到手写数字图片包含的信息比较简单,每张图片均被缩放到28 × 28的大小,同时 gca(projection='3d') # 设置 3D 坐标轴 ax.plot_surface(X, Y, Z) # 3D 曲面图 ax.view_init(60, -30) ax.set_xlabel('x') ax.set_ylabel('y') plt.show() 预览版202112 第 7 章 反向传播算法 20 图 7.11 Himmelblau 函数 3D style.use('dark_background') else: sns.set_style("whitegrid") plt.figure(figsize=(16,12)) axes = plt.gca() axes.set(xlabel="$x_1$", ylabel="$x_2$") plt.title(plot_name0 码力 | 439 页 | 29.91 MB | 1 年前3
《TensorFlow 2项目进阶实战》2-快速上手篇:动⼿训练模型和部署服务data.Dataset 加载数据 使用 tf.data.Dataset.from_tensor_slices 加载 List 使用 tf.data.Dataset.from_generator 加载 Generator 使用 tf.data.TextLineDataset 加载文本 “Hello TensorFlow” Try it! 使用 tf.keras.Model 管理模型 历史上的 digits, available from this page, has a training set of 60,000 examples, and a test set of 10,000 examples. It is a subset of a larger set available from NIST. The digits have been size- normalized0 码力 | 52 页 | 7.99 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniquesdequantized weights. How different are the two outputs? Solution: We will start with the random number generator with a fixed seed to get consistent results across multiple runs. Next, we will create an input and 5 is D2. Bias is of shape [5]. The shapes are arbitrarily chosen for illustration purposes. # Set the seed so that we get the same initialization. np.random.seed(10007) def get_random_matrix(shape): technologies like the fixed-point SIMD instructions which allows data parallelism, the SSE instruction set in x86 architecture, and similar support on ARM processors as well as on specialized DSPs like the0 码力 | 33 页 | 1.96 MB | 1 年前3
动手学深度学习 v2.0学习模型参数的最佳值。该数据集由一些为训练而收集的样本组成,称为训练数据集(training dataset,或 称为训练集(training set))。然而,在训练数据上表现良好的模型,并不一定在“新数据集”上有同样的性 能,这里的“新数据集”通常称为测试数据集(test dataset,或称为测试集(test set))。 综上所述,可用数据集通常可以分成两部分:训练数据集用于拟合模型参数,测试数据集用于评估拟合的模 型 """使用svg格式在Jupyter中显示绘图""" backend_inline.set_matplotlib_formats('svg') 我们定义set_figsize函数来设置图表大小。注意,这里可以直接使用d2l.plt,因为导入语句 from matplotlib import pyplot as plt已标记为保存到d2l包中。 def set_figsize(figsize=(3.5, 2.5)): #@save = figsize 下面的set_axes函数用于设置由matplotlib生成图表的轴的属性。 #@save def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend): """设置matplotlib的轴""" axes.set_xlabel(xlabel) axes.set_ylabel(ylabel)0 码力 | 797 页 | 29.45 MB | 1 年前3
深度学习与PyTorch入门实战 - 56. 深度学习:GANpaint After learned by 5 years After learned by 10 years Finally Put it down ▪ Painter or Generator: ▪ Critic or Discriminator https://towardsdatascience.com/generative-adversarial-networks-explained-0 码力 | 42 页 | 5.36 MB | 1 年前3
机器学习课程-温州大学-15深度学习-GANGAN的理论与实现模型 GAN的基本原理 GAN的学习方法 GAN的衍生模型 2. GAN的理论与实现模型 13 GAN 的核心思想来源于博弈论的纳什均衡。 它设定参与游戏双方分别为一个生成器 (Generator) 和一个判别器(Discriminator),生成器的目的是尽 量去学习真实的数据分布,而判别器的目的是尽量 正确判别输入数据是来自真实数据还是来自生成器; 为了取得游戏胜利,这两个游戏参与者需要不断优0 码力 | 35 页 | 1.55 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 7 - AutomationA Search Space for n parameters is a n-dimensional region such that a point in such a region is a set of well-defined values for each of those parameters. The parameters can take discrete or continuous hyperparameters to differentiate them from model parameters. The performance of deep learning relies on a set of good hyperparameters. Some of the commonly tuned hyperparameters are the learning rate and the momentum model. HPO performs trials with different sets of hyperparameters using the model as a blackbox. The set which performs the best is chosen for full training. In the next section, we'll discuss various approaches0 码力 | 33 页 | 2.48 MB | 1 年前3
keras tutorialfloatx represent the default data type float32. You can also change it to float16 or float64 using set_floatx() method. backend denotes the current backend. Suppose, if the file is not created then required information from the data. Split data: Split the data into training and test data set. Test data will be used to evaluate the prediction of the algorithm / Model (once the machine learn) Fit the model: The actual learning process will be done in this phase using the training data set. Predict result for unknown value: Predict the output for the unknown input data (other than0 码力 | 98 页 | 1.57 MB | 1 年前3
共 44 条
- 1
- 2
- 3
- 4
- 5













