积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(15)机器学习(15)

语言

全部英语(9)中文(简体)(6)

格式

全部PDF文档 PDF(15)
 
本次搜索耗时 0.036 秒,为您找到相关结果约 15 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 深度学习与PyTorch入门实战 - 08. 索引与切片

    索引与切片 主讲人:龙良曲 Indexing ▪ dim 0 first select first/last N select by steps select by specific index … select by mask ▪ .masked_select() select by flatten index 下一课时 Tensor变换 Thank You.
    0 码力 | 10 页 | 883.44 KB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    that the pull successfully completes before you proceed to step 3. 3. To run the container image, select one of the following modes: ‣ Interactive ‣ If you have Docker 19.03 or later, a typical command precision training by adding only three lines of Python to an existing FP32 (default) script. AMP will select an optimal set of operations to cast to FP16. FP16 operations require 2X reduced memory bandwidth precision training by adding only three lines of Python to an existing FP32 (default) script. AMP will select an optimal set of operations to cast to FP16. FP16 operations require 2X reduced memory bandwidth
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    7, 7]) 5.6 高级操作 上述介绍的操作函数大部分是常有并且容易理解的,接下来将介绍部分常用,但是稍 复杂的功能函数。 5.6.1 索引采样 torch.index_select()函数可以实现根据索引号收集数据的目的。考虑班级成绩册的例 子,假设共有 4 个班级,每个班级 35 个学生,8 门科目,则保存成绩册的张量 shape 为 [4,35,8]。随机创建张量如下: 1~2 个班级的成绩册,可以给定需要收集班级的索引号:[0,1],并指定班 级的维度 dim=0,通过 torch.index_select()函数收集数据,代码如下: In [38]: # 选择班级维度的 0,1 号班级 out = torch.index_select(x, dim=0, index=torch.tensor([0,1])) out.shape Out[38]: 1、4、9、12、13、27 号同学的成绩数据,则切 片方式实现起来非常麻烦,而 torch.index_select 则是针对于此需求设计的,使用起来更加 方便,实现如下: In [39]: # 收集第 1,4,9,12,13,27 号同学成绩 out = torch.index_select(x, dim=1, index=torch.tensor([0,3,8,11,12,26]))
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    number of weights, say 60%, we risk the removal of key weights. Hence, a more measured approach to select removal candidates is required. If we assign saliency scores to the model weights based on a certain algorithm is as follows: Algorithm: Clustering a given set of elements in a tensor . 1. Initialization: Select an initial set of centroids. 2. Assignment step: Assign each element in to the closest centroid data points. Another scheme is to select centroids that are linearly spaced amongst these data-points. Yet another scheme is to incrementally and probabilistically select centroids from points based on the
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 阿里云上深度学习建模实践-程孟力

    EasyRec AutoFeature  特征组合 • Count select count(1) group by col • GroupByThenMax/Min/Avg/Sum select max(col2) group by col1 • CrossCount[2] select count (1) group by col1,col2 特征组合 +
    0 码力 | 40 页 | 8.51 MB | 1 年前
    3
  • pdf文档 Experiment 1: Linear Regression

    spaced vector (linspace) and logarithmically spaced vector (logspace). Try both in this exercises and select the better one to improve the illustration. 5 Multivariate Linear Regression We now look at a more : , 3 ) − mu( 3 ) ) . / sigma ( 3 ) ; 5.1 Selecting A Learning Rate Using J(θ) Now it’s time to select a learning rate α. The goal of this part is to pick a good learning rate in the range of 0.001 ≤
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
  • pdf文档 keras tutorial

    and acquire a good understanding of the data. The better understanding of the data is required to select the correct ANN algorithm. Choose an algorithm (model) Keras 15 Choose an layers in ANN can be represented by Keras Layer in Keras.  Prepare data: Process, filter and select only the required information from the data.  Split data: Split the data into training and keras.applications.resnet50 import ResNet50 >>> from keras.applications import resnet50 Step2: Select an input Let us choose an input image, Lotus as specified below: >>> filename = 'banana.jpg'
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 35. Early-stopping-Dropout

    Dropout ▪ Stochastic Gradient Descent Early Stopping ▪ Regularization How-To ▪ Validation set to select parameters ▪ Monitor validation performance ▪ Stop at the highest val perf. Dropout ▪ Learning
    0 码力 | 16 页 | 1.15 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 54. AutoEncoder自编码器

    Auto-Encoders ▪ PCA, which finds the directions of maximal variance in high- dimensional data, select only those axes that have the largest variance. ▪ The linearity of PCA, however, places significant
    0 码力 | 29 页 | 3.49 MB | 1 年前
    3
  • pdf文档 Lecture 4: Regularization and Bayesian Statistics

    September 20, 2023 4 / 25 Addressing The Overfitting Problem Reduce the number of features Manually select which features to keep Use a model selection algorithm Regularization Keep all the features, but
    0 码力 | 25 页 | 185.30 KB | 1 年前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
深度学习PyTorch入门实战08索引切片ReleaseNotes深度学习EfficientDeepLearningBookEDLChapterAdvancedCompressionTechniques阿里云上建模实践程孟力ExperimentLinearRegressionkerastutorial35EarlystoppingDropout54AutoEncoder编码码器编码器LectureRegularizationandBayesianStatistics
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩