积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(23)机器学习(23)

语言

全部英语(17)中文(简体)(6)

格式

全部PDF文档 PDF(23)
 
本次搜索耗时 0.048 秒,为您找到相关结果约 23 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    features:  Consistent, simple and extensible API.  Minimal structure - easy to achieve the result without any frills.  It supports multiple platforms and backends.  It is user friendly framework install numpy you could see the following response, Collecting numpy Downloading https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353 c330e59be8cf2d47c0b11d3cde8/ install pandas We could see the following response: Collecting pandas Downloading https://files.pythonhosted.org/packages/cf/a4/d5387a74204542a60ad1baa84cd2d3353 c330e59be8cf2d47c0b11d3cde8/
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Experiment 1: Linear Regression

    start a very simple case where n = 1. Download data1.zip, and extract the files (ex1x.dat and ex1y.dat) from the zip file. The files contain some example measurements of heights for various boys between the in this example we have only one feature, being able to plot this gives a nice sanity-check on our result. (3) Finally, we’d like to make some predictions using the learned hypothesis. Use your model to complicated case where each training data contains mul- tiple features. Download data1.zip, and extract the files (ex2x.dat and ex2y.dat) from the zip file. This is a training set of housing prices in Portland, Oregon
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    a certain, say p, percentage of the smallest absolute valued weights in each training epoch. The result of such a training process is p% weights with zero values. Sparse compressed models achieve higher The network on the right is the pruned version of the network on the left. The pruned network is a result of pruning the first row of the weight matrix. By pruning all 6 weights from one neuron, instead regular model and its 50% sparse version. We used Tensorflow's save_model() API and zipped the model files using gzip. In addition to the usual models, the figure also shows compressed size comparisons for
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    sine wave is a low precision representation which takes integer values in the range [0, 5]. As a result, the quantized wave requires low transmission bandwidth. Figure 2-3: Quantization of sine waves the low precision domain, because we are losing precision when going to a b-bit integer and as a result values which were close in the high precision domain might end up being mapped to the same value values, with the starting and endpoint defined, along with a step value. This returns the following result. [-10. -7.5 -5. -2.5 0. 2.5 5. 7.5 10. ] Now let’s quantize x. # Quantize the
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    as tfds with tf.device('/job:localhost'): ds = tfds.load('ag_news_subset', try_gcs=True, shuffle_files=True, batch_size=-1) train_dataset = tf.data.Dataset.from_tensor_slices(ds['train']) test_dataset reduction on CIFAR-10 and 9.23% reduction in the test error on the CIFAR-100 dataset. The latter result was achieved with a 1202 layer ResNet which earlier overfit on the training dataset, while also being
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    `antialiasing` argument for resizing operations in DALI 1.16.0 was changed to `True`, which could result in performance regressions on CPU-limited use cases. Set this argument to `False` to restore the scenes. This means that CUDA streams are created when first used on a GPU and destroyed on exit. As a result, networks that use multiple streams may see the same stream used repeatedly in their profiles, and Issues ‣ The DALI integrated ResNet-50 samples in the 18.09 NGC TensorFlow and PyTorch containers may result in lower than expected performance results. We are working to address the issue in the next release
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    ./main -h 以了解它们。 1.4.3 生成你的 GGUF 文件 We introduce the method of creating and quantizing GGUF files in quantization/llama.cpp. You can refer to that document for more information. 1.4.4 PPL 评测 llama built-in tool␣ �→in Qwen-Agent bot = Assistant(llm=llm_cfg, system_message=system, function_list=tools, files=[os.path.abspath('doc.pdf')]) messages = [] while True: query = input('user question: ') messages knowledge base Q&A solution. 1.16.1 基础用法 The implementation process of this project includes loading files -> reading text -> segmenting text -> vectorizing text -> vectorizing questions -> matching the top
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 深度学习下的图像视频处理技术-沈小勇

    DPE White-box Distort-and-Recover Our result Expert-retouched Visual Comparison: MIT-Adobe FiveK Input JieP HDRNet DPE White-box Distort-and-Recover Our result Expert-retouched More Comparison Results: HDRNet DPE White-Box Distort-and-Recover Our result Limitaion Input Our result More Results Input JieP HDRNet DPE White-box Distort-and-Recover Our result Expert-retouched More Results Input JieP JieP HDRNet DPE White-box Distort-and-Recover Our result Expert-retouched More Results Input JieP HDRNet DPE White-box Distort-and-Recover Our result Expert-retouched More Results Input JieP HDRNet DPE
    0 码力 | 121 页 | 37.75 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    10 份,每份长度为 1 result = torch.split(x, split_size_or_sections=1, dim=0) len(result) # 返回的列表为 10 个张量的列表 Out[8]: 10 可以查看切割后的某个张量的形状,它应是某个班级的所有成绩册数据,shape 为[35,8], 例如: In [9]: result[0] # 查看第一个班级的成绩册张量 [10]: x = torch.randn([10,35,8]) # 自定义长度的切割,切割为 4 份,返回 4 个张量的列表 result result = torch.split(x, [4,2,2,2] , dim=0) len(result) Out[10]: 4 查看第一个张量的 shape,根据上述的切割方案,它应该包含了 4 个班级的成绩册,shape 预览版202112 预览版202112 5.2 数据统计 5 应为[4,35,8],验证一下: In [10]: result[0] Out[10]: # torch.Size([4, 35, 8]) tensor([[[-6.95693314e-01, 3.01393479e-01, 1.33964568e-01, ...,]]]) 除了 split 函数可以实现张量分割外,PyTorch
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    which translates Spanish to English. This model translates “Estoy muy bien” to “I am fine”. This result can be used to train our original English to Spanish translation model. Let’s dig deeper into each on every sample results in a dataset 2x the original size. Two transformations applied separately result in a dataset 3x the original size. Can we apply N transformations to create a dataset Nx the size A 50 pixel point shift moves a pixel with initial coordinates to the final coordinates . As a result, the image is vertically shifted by 50px as shown in the top middle image in figure 3-6. Such a
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
共 23 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
kerastutorialExperimentLinearRegressionEfficientDeepLearningBookEDLChapterAdvancedCompressionTechniquesTechnicalReviewPyTorchReleaseNotesAI模型千问qwen中文文档深度学习图像视频处理技术沈小勇深度学习
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩