积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(21)机器学习(21)

语言

全部英语(13)中文(简体)(8)

格式

全部PDF文档 PDF(21)
 
本次搜索耗时 0.033 秒,为您找到相关结果约 21 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    dissimilar. How do we go about creating positive pairs? One example of such a recipe is the SimCLR framework12,13 (refer to Figure 6-10). SimCLR creates positive pairs by using different data augmentations enforce agreement between and . Figure 6-10: Contrastive learning as implemented in the SimCLR framework. The input is augmented to generate two views, and . Using the shared encoder , hidden 13 Chen Learners." arXiv, 17 June 2020, doi:10.48550/arXiv.2006.10029. 12 Chen, Ting, et al. "A Simple Framework for Contrastive Learning of Visual Representations." arXiv, 13 Feb. 2020, doi:10.48550/arXiv.2002
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    easy to see that floating-point xmin should map to 0, and xmax should map to 2b-1. How do we map the rest of the floating point values in between xmin and xmax to integer values? Exercise: Mapping from a Apple’s CoreML as well which are covered in chapter 10. If you are not familiar with the tensorflow framework, we refer you to the book Deep Learning with Python1. All the code examples in this book are available to CPU, GPU, and TPU resources. You can also run this locally on your machine using the Jupyter framework or with other cloud services. The solution to this specific exercise is in this notebook. Solution:
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    infrastructure and tools that help us build and leverage efficient models. This includes the model training framework, such as Tensorflow, PyTorch, etc.. Often these frameworks will be paired with the tools required cores on the accelerators. This makes the Nano suited for applications like home automation, and the rest for more compute intensive applications like industrial robotics. Figure 1-19: Jetson Nano module
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    firstly, regularization and dropout are fairly straight-forward to enable in any modern deep learning framework. Secondly, data augmentation and distillation can bring significant efficiency gains during the 02531 (2015). Note that these are one-hot labels. Exactly one class is assigned a value of 1 and the rest are assigned a value of 0. Hence, a vector of four floating point values needs to be stored with each
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    widely-used deep learning frameworks such as PyTorch. PyTorch is a GPU-accelerated tensor computational framework with a Python front end. Functionality can be easily extended with common Python libraries such layer level. This functionality brings a high level of flexibility and speed as a deep learning framework and provides accelerated NumPy-like functionality. PyTorch also includes standard defined neural more information. The deep learning frameworks, the NGC Docker containers, and the deep learning framework containers are stored in the nvcr.io/nvidia repository. PyTorch RN-08516-001_v23.07 | 3 Chapter
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03机器学习-逻辑回归

    我们先从用蓝色圆形数据定义为类 型1,其余数据为类型2; 只需要分类1次 步骤:①->② ① ② 二分类 6 多分类 分类问题 1 rest 1 2 rest One-vs-All (One-vs-Rest) 我们先定义其中一类为类型1(正 类),其余数据为负类(rest); 接下来去掉类型1数据,剩余部分 再次进行二分类,分成类型2和负 类;如果有?类,那就需要分类?-1 次 步骤:①->②->③->……
    0 码力 | 23 页 | 1.20 MB | 1 年前
    3
  • pdf文档 keras tutorial

    Keras ii About the Tutorial Keras is an open source deep learning framework for python. It has been developed by an artificial intelligence researcher at Google named Francois the field of deep learning and neural network framework. This tutorial is intended to make you comfortable in getting started with the Keras framework concepts. Prerequisites Before proceeding concepts given in this tutorial, we assume that the readers have basic understanding of deep learning framework. In addition to this, it will be very helpful, if the readers have a sound knowledge of Python
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Lecture 3: Logistic Regression

    classification Feng Li (SDU) Logistic Regression September 20, 2023 24 / 29 Transformation to Binary One-vs.-rest (one-vs.-all, OvA or OvR, one-against-all, OAA) strategy is to train a single classifier per class
    0 码力 | 29 页 | 660.51 KB | 1 年前
    3
  • pdf文档 亚马逊AWSAI Services Overview

    Gateway AWS Lambda 1: Understand user intent Amazon API Gateway AWS Lambda 3: Translate REST response into natural language Mobile Hub Custom Connector 2: Invoke a SaaS application or
    0 码力 | 56 页 | 4.97 MB | 1 年前
    3
  • pdf文档 深度学习在电子商务中的应用

    用户意图识别 检索模块 段落或句 子检索 文档检 索 专业检索接口: 商品参数接口 商品价格接口 商品信息接口 商品卖点接口 促销活动接口 订单信息接口 语法语义分析 用户画像 Json/rest 答案获取和排序模块 答案实体抽取 返回最相关答案 相关性句子排序 …… 机器学习/深度学习模型 电商知识库 社交嵌入应用前端 …… 命名实体识别 20 • 最简单地, 用户文字输入的理解可以采用“bag
    0 码力 | 27 页 | 1.98 MB | 1 年前
    3
共 21 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterAdvancedTechniquesTechnicalReviewCompressionIntroductionPyTorchReleaseNotes机器学习课程温州大学03逻辑回归kerastutorialLectureLogisticRegression亚马亚马逊AWSAIServicesOverview深度电子商务电子商务应用
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩