QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野RCNN • RCNN • Fast RCNN • Faster RCNN region proposals classification bounding-box regression region proposals classification bounding-box regression region proposals classification bounding-box Faster RCNN Faster RCNN https://github.com/rbgirshick/py-faster-rcnn Conv Layers Feature Maps Region Proposal Network Classifier © 2018 Bloomberg Finance L.P. All rights reserved. Faster RCNN © Bloomberg Finance L.P. All rights reserved. Object Detection Good Enough? Conv Layers Feature Maps Region Proposal Network Classifier © 2018 Bloomberg Finance L.P. All rights reserved. Intersection Over0 码力 | 64 页 | 13.45 MB | 1 年前3
机器学习课程-温州大学-09深度学习-目标检测oost等)。 12 1.目标检测概述 2.基于深度学习的Two Stages目标检测框架 (准确度有优势) 此类算法将检测问题分为两个阶段, 第一阶段生成大量可能含有目标的候选区域(Region Proposal),并附 加大概的位置信息; 第二个阶段对其进行分类,选出包含目标的候选区域并对其位置进行 修正(常使用R-CNN、Fast R-CNN、Faster R-CNN等算法)。 目标检测概述 37 4.Faster RCNN算法 1.Conv layers 2.Region Proposal Networks 3.Roi Pooling 4.Classification 38 4.Faster RCNN算法 39 4.Faster RCNN算法 Region Proposal Networks RPN网络的作用: RPN专门用来提取候选框,一方面RPN耗时少, Faster RCNN训练步骤 • 第一步,训练RPN,该网络用ImageNet预训练的模型初始化,并端到端微调,用于生成region proposal; • 第二步,训练Faster RCNN,由imageNet model初始化,利用第一步的RPN生成的region proposals作为输入数据,训练Fast R-CNN一个单独的检测网络,这时候两个网络还没有共享卷 积层; •0 码力 | 43 页 | 4.12 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 7 - Automationthe computer vision domain. A Search Space for n parameters is a n-dimensional region such that a point in such a region is a set of well-defined values for each of those parameters. The parameters can Even though the trials in the blue region perform better than the ones in the red region, the search algorithm makes no effort to search "more" in the blue region. In other words, it doesn't learn from estimates. Take a look at the figure 7-2 (c) which shows that the BOS trials concentrated in the blue region. The surrogates are typically represented through Gaussian Processes, Random Forests or other statistical0 码力 | 33 页 | 2.48 MB | 1 年前3
Lecture 6: Support Vector Machinesome training examples to be misclassified, and some training examples to fall within the margin region Feng Li (SDU) SVM December 28, 2021 58 / 82 Soft-Margin SVM (Contd.) Recall that, for the separable0 码力 | 82 页 | 773.97 KB | 1 年前3
Lecture Notes on Support Vector Machinetraining examples to be misclassified, such that some training examples may fall within the margin region, as shown in Fig. 5. For the linearly separable case, the constraints are 12 Figure 6: Regularized0 码力 | 18 页 | 509.37 KB | 1 年前3
AI大模型千问 qwen 中文文档READY 2/2 3.85.107.228:30002 Service Replicas SERVICE_NAME ID VERSION IP LAUNCHED RESOURCES STATUS REGION Qwen 1 1 - 2 mins ago 1x Azure({'A100-80GB': 8}) READY eastus Qwen 2 1 - 2 mins ago 1x GCP({'L4':0 码力 | 56 页 | 835.78 KB | 1 年前3
动手学深度学习 v2.0文 (Liu et al., 2016)中的方法。 Discussions177 13.8 区域卷积神经网络(R-CNN)系列 除了 13.7节中描述的单发多框检测之外,区域卷积神经网络(region‐based CNN或regions with CNN features, R‐CNN)(Girshick et al., 2014)也是将深度模型应用于目标检测的开创性工作之一。本节将介绍R‐CNN及其一 为了较精确地检测目标结果,Fast R‐CNN模型通常需要在选择性搜索中生成大量的提议区域。Faster R-CNN (Ren et al., 2015)提出将选择性搜索替换为区域提议网络(region proposal network),从而减少提议区域的 生成数量,并保证目标检测的精度。 图13.8.4: Faster R‐CNN 模型 图13.8.4描述了Faster R‐CNN模型。与Fast He, K., Girshick, R., & Sun, J. (2015). Faster r‐cnn: towards real‐time object de‐ tection with region proposal networks. Advances in neural information processing systems (pp. 91– 99). [Russell & Norvig0 码力 | 797 页 | 29.45 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112Machine Learning, 1992. [10] J. Schulman, S. Levine, P. Abbeel, M. Jordan 和 P. Moritz, “Trust Region Policy Optimization,” 出处 Proceedings of the 32nd International Conference on Machine Learning0 码力 | 439 页 | 29.91 MB | 1 年前3
共 8 条
- 1













