积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(74)机器学习(74)

语言

全部中文(简体)(45)英语(29)

格式

全部PDF文档 PDF(74)
 
本次搜索耗时 0.063 秒,为您找到相关结果约 74 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 动手学深度学习 v2.0

    import Image from torch import nn from torch.nn import functional as F from torch.utils import data from torchvision import transforms 目标受众 本书面向学生(本科生或研究生)、工程师和研究人员,他们希望扎实掌握深度学习的实用技术。因为我们 从头开始解 编写了一个“学习”程序。如果我们用一个巨大的带标签的数 据集,它很可能可以“学习”识别唤醒词。这种“通过用数据集来确定程序行为”的方法可以被看作用数据 编程(programming with data)。比如,我们可以通过向机器学习系统,提供许多猫和狗的图片来设计一个 “猫图检测器”。检测器最终可以学会:如果输入是猫的图片就输出一个非常大的正数,如果输入是狗的图片 就会输出一个非常小的负数 学习的一个主要分支,本节稍后的内容将对其 进行更详细的解析。 1.2 机器学习中的关键组件 首先介绍一些核心组件。无论什么类型的机器学习问题,都会遇到这些组件: 1. 可以用来学习的数据(data); 2. 如何转换数据的模型(model); 3. 一个目标函数(objective function),用来量化模型的有效性; 4. 调整模型参数以优化目标函数的算法(algorithm)。
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    Overview of Compression One of the simplest approaches towards efficiency is compression to reduce data size. For the longest time in the history of computing, scientists have worked tirelessly towards popular example of lossless data compression algorithm is Huffman Coding, where we assign unique strings of bits (codes) to the symbols based on their frequency in the data. More frequent symbols are assigned and the path to that symbol is the bit-string assigned to it. This allows us to encode the given data in as few bits as possible, since the most frequent symbols will take the least number of bits to
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 人工智能发展史

    cope with multi categories https://youtu.be/aygSMgK3BEM Perceptrons’ Limitation: 1969 http://science.sciencemag.org/content/165/3895/780 Is it Winter? http://www.iro.umontreal.ca/~vincentp/ift339 pdf http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf Other Heroes ▪ Big Data ▪ ReLU ▪ BatchNorm ▪ Xavier Initialization ▪ Kaiming Initialization ▪ Dropout http://www.iro Goodfellow ▪ How I fail https://veronikach.com/how-i-fail/how-i-fail-ian-goodfellow-phd14-computer-science/ http://www.iro.umontreal.ca/~vincentp/ift3395/lectures/backprop_old.pdf ▪ 2015 https://storage
    0 码力 | 54 页 | 3.87 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    0.01 的高斯分布: ? = 1. ? + . + ?, ? ∼ ?( , . 12) 通过随机采样? = 1 次,可以获得?个样本的训练数据集?train,代码如下: data = []# 保存样本集的列表 for i in range(100): # 循环采样 100 个点 x = np.random.uniform(-10., 10.) # 随机采样输入 random.normal(0., 0.01) # 得到模型的输出 y = 1.477 * x + 0.089 + eps data.append([x, y]) # 保存样本点 data = np.array(data) # 转换为 2D Numpy 数组 通过 for 循环进行 100 次采样,每次从均匀分布?(−1 ,1 )中随机采样一个数据?,同时从 均值为 1000 次,返回最优 w*,b*和训练 Loss 的下降过程 [b, w]= gradient_descent(data, initial_b, initial_w, lr, num_iterations) loss = mse(b, w, data) # 计算最优数值解 w,b 上的均方差 print(f'Final loss:{loss}, w:{w}, b:{b}')
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    Python usage − This library is considered to be Pythonic which smoothly integrates with the Python data science stack. • It can be considered as NumPy extension to GPUs. • Computational graphs − PyTorch provides computation graph) • Various other functions • loss (MSE,CE etc..) • optimizers Prepare Input Data •Load data •Iterate over examples Train Model •Train weights Evaluate Model •Visualise Tensor requires_grad=True) •Accessing tensor value: • t.data •Accessing tensor gradient • t.grad • grad_fn – history of operations for autograd • t.grad_fn Loading Data, Devices and CUDA • Numpy arrays to PyTorch
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Machine Learning

    Networks and Deep Learning Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2018 Deep Feedforward Networks • Also called feedforward f(x) from the given training data • In the output layer, f(x) ≈ y for each training data, but the behavior of the other layers is not directly specified by the training data • Learning algorithm must decided intermediate layers such that right results can be obtained in the output layer, but the training data do not say what each individual layer should do • The only thing we must provide to the neural network
    0 码力 | 19 页 | 944.40 KB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-10机器学习-聚类

    Discovering Clusters in Large Spatial Databases with Noise[J]. Proc.int.conf.knowledg Discovery & Data Mining, 1996. [3] Andrew Ng. Machine Learning[EB/OL]. Stanford University,2014. https://www.coursera 2001. 47 参考文献 [7] Rodriguez A, Laio A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191):1492. [8] CHRISTOPHER M. BISHOP. Pattern Recognition and Machine Learning[M] A, et al. Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection[J]. Acm Transactions on Knowledge Discovery from Data, 2015. [11] 彭 涛 . 人 工 智 能 概 论 [EB/OL]. 北 京 联
    0 码力 | 48 页 | 2.59 MB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    pX(x) , ∀y We calculate pX|Y (x | y) for ∀x, y and pY (y) for ∀y according to the given training data Fortunately, we do not have to calculate pX(x), because arg max y pY |X(y | x) = arg max y pX|Y learning from training data, but how? Feng Li (SDU) GDA, NB and EM September 27, 2023 33 / 122 Warm Up (Contd.) Given a set of training data D = {x(i), y(i)}i=1,··· ,m The training data are sampled in an an i.i.d. manner The probability of the i-th training data (x(i), y (i)) P(X = x(i), Y = y (i)) = P(X = x(i) | Y = y (i))P(Y = y (i)) = pX(x(i) | y (i))pY (y (i)) = pX|Y (x(i) | y (i))pY (y (i)) The
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-11机器学习-降维

    coursera.org/course/ml [2] Hinton, G, E, et al. Reducing the Dimensionality of Data with Neural Networks.[J]. Science, 2006. [3] Jolliffe I T . Principal Component Analysis[J]. Journal of Marketing
    0 码力 | 51 页 | 3.14 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    for weight sharing. However, quantization falls behind in case the data that we are quantizing is not uniformly distributed, i.e. the data is more likely to take values in a certain range than another equally ranges (bins), regardless of the frequency of data. Clustering helps solve that problem by adapting the allocation of precision to match the distribution of the data, which ensures the decoded value deviates "Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science." Nature communications 9.1 (2018): 1-12. Weight sparsity has typically been the primary focus of
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
共 74 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 8
前往
页
相关搜索词
动手深度学习v2EfficientDeepLearningBookEDLChapterCompressionTechniques人工智能人工智能发展发展史PyTorch深度学习TutorialMachine机器课程温州大学10聚类LectureGaussianDiscriminantAnalysisNaiveBayes11降维Advanced
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩