Keras: 基于 Python 的深度学习库Keras: 基于 Python 的深度学习库 Keras: The Python Deep Learning library* Author: Keras-Team Contributor: 万 震 (WAN Zhen) � wanzhenchn � wanzhen@cqu.edu.cn 2018 年 12 月 24 日 *Copyright © 2018 by Keras-Team Keras-Team 前 言 整理 Keras: 基于 Python 的深度学习库 PDF 版的主要原因在于学习 Keras 深度学习库时方 便本地查阅,下载最新 PDF 版本请访问: https://github.com/wanzhenchn/keras-docs-zh。 感谢 keras-team 所做的中文翻译工作,本文档制作基于此处。 严正声明:本文档可免费用于学习和科学研究,可自由传播,但切勿擅自用于商业用途,由 purposes. Otherwise, the contributor is not responsible for the consequences. 目录 I 目录 1 Keras: 基于 Python 的深度学习库 1 1.1 你恰好发现了 Keras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 257 页 | 1.19 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression TechniquesIf you are not familiar with the tensorflow framework, we refer you to the book Deep Learning with Python1. All the code examples in this book are available at the EDL GitHub repository. The code examples 1). x_q = np.minimum(x_q, 2**b - 1) # Return x_q as an unsigned integer. 1 Deep Learning with Python by Francois Chollet # uint8 is the smallest data type supported by numpy. return x_q.astype(np unpack them when decoding the data. Now let’s run the code for the range [-10, 10], incrementing by 2.5 each time and find the quantized values for b = 3. First, let’s create our x. # Construct the array0 码力 | 33 页 | 1.96 MB | 1 年前3
动手学深度学习 v2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.1.6 转换为其他Python对象 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.2 数据预处理 . . . . . . . 2.4.4 链式法则 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.5 自动微分 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 分离计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.5.4 Python控制流的梯度计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2.6 概率 . . . . . . .0 码力 | 797 页 | 29.45 MB | 1 年前3
PyTorch OpenVINO 开发实战系列教程第一篇Pytorch 框架,搭建 好 Pytorch 的开发环境,通过一系列的基础代码练习与演示建立起对深度学习 与 Pytorch 框架的感性认知。 本书内容以 Python 完成全部代码构建与程序演示。本章的主要目标是帮助初 次接触 Python 与 Pytorch 的读者搭建好开发环境,认识与理解 Pytorch 框架 中常见的基础操作函数、学会使用它们完成一些基础的数据处理与流程处理, 为后续内容学习打下良好基础。 Pytorch 介绍与基础知识 1.1 Pytorch 介绍 Pytorch 是开放源代码的机器学习框架,目的是加速从研究 原型到产品开发的过程。其 SDK 主要基于 Python 语言,而 Python 语言作为流行的人工智能开发语言一直很受研究者与 开发者的欢迎。其模型训练支持CPU与GPU、支持分布式训练、 云部署、针对深度学习特定领域有不同的丰富的扩展库。 1.1.1 Pytorch 学习)框架,Pytorch 最初的来源历史可以追溯到另外两个 机器学习框架,第一个是 torch 框架,第二个是 Chainer,实 现了 Eager 模式与自动微分,Pytoch 集成了这两个框架的优 点, 把 Python 语言作为框架的首选编程语言,所以它的名字 是在 torch 的前面加上 Py 之后的 Pytorch。由于 Pytorch 吸 取了之前一些深度学习框架优点,开发难度大大降低、很容易 构0 码力 | 13 页 | 5.99 MB | 1 年前3
PyTorch Release NotesPyTorch is a GPU-accelerated tensor computational framework with a Python front end. Functionality can be easily extended with common Python libraries such as NumPy, SciPy, and Cython. Automatic differentiation in the default Python environment (/usr/local/lib/ python3.10/dist-packages/torch) in the container image. The container also includes the following: ‣ Ubuntu 22.04 including Python 3.10 ‣ NVIDIA CUDA® TensorRT integration for PyTorch and brings the capabilities of TensorRT directly to Torch in one line Python and C++ APIs. ‣ Starting with the 22.05 release, the PyTorch container is available for the Arm0 码力 | 365 页 | 2.94 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112免地需要使用正式化的 数学符号推导,其中涉及到少量的概率与统计、线性代数、微积分等数学知识,一般要求读 者对这些数学知识有初步印象或了解即可。比起理论基础,读者需要有少量的编程经验,特 别是 Python 语言编程经验,显得更加重要,因为本书更侧重于实用性,而不是堆砌公式。 总的来说,本书适合于大学三年级左右的理工科本科生和研究生,以及其他对人工智能算法 感兴趣的朋友。 本书共 15 章,大体上可分为 5 深度学习框架 1.6 开发环境安装 1.7 参考文献 第 2 章 回归问题 2.1 神经元模型 2.2 优化方法 2.3 线性模型实战 2.4 线性回归 2.5 参考文献 第 3 章 分类问题 3.1 手写数字图片数据集 3.2 模型构建 3.3 误差计算 3.4 真的解决了吗 3.5 非线性模型 3.6 表达能力 3 5-and-apollo-enterprise-says-it-has- over-130-partners/ 预览版202112 1.5 深度学习框架 13 是一个基于 Python 语言、定位底层运算的计算库,Theano 同时支持 GPU 和 CPU 运 算。由于 Theano 开发效率较低,模型编译时间较长,同时开发人员转投 TensorFlow 等原因,Theano0 码力 | 439 页 | 29.91 MB | 1 年前3
keras tutorialKeras ii About the Tutorial Keras is an open source deep learning framework for python. It has been developed by an artificial intelligence researcher at Google named Francois Chollet framework. In addition to this, it will be very helpful, if the readers have a sound knowledge of Python and Machine Learning. Copyright & Disclaimer Copyright 2019 by Tutorials Point (I) Pvt. ................................................................... 3 Keras Installation Using Python ................................................................................................0 码力 | 98 页 | 1.57 MB | 1 年前3
机器学习课程-温州大学-08机器学习-集成学习 ??∈?2 ?? 1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5 ? ? = min ?1 ??∈?1 (?? − ?1)2 + min ?2 ??∈?2 (?? − ?2)2 ? = 1.5,?1 = 1 , ?2 = 2,3, … , 10 , ?1 = 5.56, ?2 = 7.5 s 1.5 2.5 3.5 4.5 5.5 6.5 7 5 0.07 -0.11 ?6 ? = x<2.5 -0.15 0.04 ? ?, ?3 ? =0.47 ? ?, ?4 ? =0.30 ? ?, ?5 ? =0.23 ?6 ? = ?5 ? + ?6 ? =?1 ? +…+?6 ? = ? ?, ?6 ? =0.17 x<6.5 x<4.5 8.95 x<3.5 x<2.5 5.63 6.83 6.56 5.82 (7)不断地重复(1)~(6)步骤直到达到规定的迭代次数或者收敛为止。 40 4.LightGBM 样本序号 样本的特征取值 样本的一阶导 样本的二阶导 ? 1 2 3 4 5 6 7 8 ?? 0.1 2.1 2.5 3.0 3.0 4.0 4.5 5.0 ?? 0.01 0.03 0.06 0.05 0.04 0.7 0.6 0.07 ℎ? 0.2 0.04 0.05 0.02 0.08 0.02 0.030 码力 | 50 页 | 2.03 MB | 1 年前3
机器学习课程-温州大学-02-数学基础回顾-2.CS229-Prob机器学习课程复习材料-概率论 概率论复习和参考 1. 概率的基本要素 1.1 条件概率和独立性 2. 随机变量 2.1 累积分布函数 2.2 概率质量函数 2.3 概率密度函数 2.4 期望 2.5 方差 2.6 一些常见的随机变量 3. 两个随机变量 3.1 联合分布和边缘分布 3.2 联合概率和边缘概率质量函数 3.3 联合概率和边缘概率密度函数 3.4 条件概率分布 3.5 给出。作为上述情况的特例,请注意,随机变量本身的期望值,是通过令 得到 的,这也被称为随机变量的平均值。 性质: 对于任意常数 , 对于任意常数 , (线性期望): 对于一个离散随机变量 , 2.5 方差 随机变量 的方差是随机变量 的分布围绕其平均值集中程度的度量。形式上,随机变量 的方差定义 为: 使用上一节中的性质,我们可以导出方差的替代表达式: 其中第二个等式来自期望的线性,以及0 码力 | 12 页 | 1.17 MB | 1 年前3
房源质量打分中深度学习应用及算法优化-周玉驰区域竞争力 结合体现竞争力的特征 反映某一距离范围内的竞争力 2019 KE.COM ALL COPYRIGHTS RESERVED 34 指标 • TopN去化率 • N=2.5 * 周成交量 效果评估 32个城市平均值 • TopN去化率:31.7% • 自然去化率:3.8% 去化率(一周平均值) 2019 KE.COM ALL COPYRIGHTS RESERVED0 码力 | 48 页 | 3.75 MB | 1 年前3
共 39 条
- 1
- 2
- 3
- 4













