Keras: 基于 Python 的深度学习库Keras: 基于 Python 的深度学习库 Keras: The Python Deep Learning library* Author: Keras-Team Contributor: 万 震 (WAN Zhen) � wanzhenchn � wanzhen@cqu.edu.cn 2018 年 12 月 24 日 *Copyright © 2018 by Keras-Team Keras-Team 前 言 整理 Keras: 基于 Python 的深度学习库 PDF 版的主要原因在于学习 Keras 深度学习库时方 便本地查阅,下载最新 PDF 版本请访问: https://github.com/wanzhenchn/keras-docs-zh。 感谢 keras-team 所做的中文翻译工作,本文档制作基于此处。 严正声明:本文档可免费用于学习和科学研究,可自由传播,但切勿擅自用于商业用途,由 purposes. Otherwise, the contributor is not responsible for the consequences. 目录 I 目录 1 Keras: 基于 Python 的深度学习库 1 1.1 你恰好发现了 Keras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 257 页 | 1.19 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112免地需要使用正式化的 数学符号推导,其中涉及到少量的概率与统计、线性代数、微积分等数学知识,一般要求读 者对这些数学知识有初步印象或了解即可。比起理论基础,读者需要有少量的编程经验,特 别是 Python 语言编程经验,显得更加重要,因为本书更侧重于实用性,而不是堆砌公式。 总的来说,本书适合于大学三年级左右的理工科本科生和研究生,以及其他对人工智能算法 感兴趣的朋友。 本书共 15 章,大体上可分为 5-and-apollo-enterprise-says-it-has- over-130-partners/ 预览版202112 1.5 深度学习框架 13 是一个基于 Python 语言、定位底层运算的计算库,Theano 同时支持 GPU 和 CPU 运 算。由于 Theano 开发效率较低,模型编译时间较长,同时开发人员转投 TensorFlow 等原因,Theano 加速,对神经网络相关层的实现也较欠缺。 ❑ Caffe 由华人贾扬清在 2013 年开发,主要面向使用卷积神经网络的应用场合,并不适 合其它类型的神经网络的应用。Caffe 的主要开发语言是 C++,也提供 Python 语言等 接口,支持 GPU 和 CPU。由于开发时间较早,在业界的知名度较高,2017 年 Facebook 推出了 Caffe 的升级版本 Cafffe2,Caffe2 目前已经融入到 PyTorch0 码力 | 439 页 | 29.91 MB | 1 年前3
动手学深度学习 v2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.1.6 转换为其他Python对象 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.2 数据预处理 . . . . . . . 分离计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.5.4 Python控制流的梯度计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2.6 概率 . . . . . . . 中的问题;(4)允许我们和社区 的快速更新;(5)由一个论坛2作为补充,用于技术细节的互动讨论和回答问题。 这些目标经常是相互冲突的。公式、定理和引用最好用LaTeX来管理和布局。代码最好用Python描述。网页 原生是HTML和JavaScript的。此外,我们希望内容既可以作为可执行代码访问、作为纸质书访问,作为可下 载的PDF访问,也可以作为网站在互联网上访问。目前还没有完全适合这些需求的工具和工作流程,所以我0 码力 | 797 页 | 29.45 MB | 1 年前3
PyTorch OpenVINO 开发实战系列教程第一篇Pytorch 框架,搭建 好 Pytorch 的开发环境,通过一系列的基础代码练习与演示建立起对深度学习 与 Pytorch 框架的感性认知。 本书内容以 Python 完成全部代码构建与程序演示。本章的主要目标是帮助初 次接触 Python 与 Pytorch 的读者搭建好开发环境,认识与理解 Pytorch 框架 中常见的基础操作函数、学会使用它们完成一些基础的数据处理与流程处理, 为后续内容学习打下良好基础。 Pytorch 介绍与基础知识 1.1 Pytorch 介绍 Pytorch 是开放源代码的机器学习框架,目的是加速从研究 原型到产品开发的过程。其 SDK 主要基于 Python 语言,而 Python 语言作为流行的人工智能开发语言一直很受研究者与 开发者的欢迎。其模型训练支持CPU与GPU、支持分布式训练、 云部署、针对深度学习特定领域有不同的丰富的扩展库。 1.1.1 Pytorch 学习)框架,Pytorch 最初的来源历史可以追溯到另外两个 机器学习框架,第一个是 torch 框架,第二个是 Chainer,实 现了 Eager 模式与自动微分,Pytoch 集成了这两个框架的优 点, 把 Python 语言作为框架的首选编程语言,所以它的名字 是在 torch 的前面加上 Py 之后的 Pytorch。由于 Pytorch 吸 取了之前一些深度学习框架优点,开发难度大大降低、很容易 构0 码力 | 13 页 | 5.99 MB | 1 年前3
全连接神经网络实战. pytorch 版DezemingFamily 的系列书,可以从我们的网站 [https://dezeming.top/] 找到最新版。对 书的内容建议和出现的错误欢迎在网站留言。 0.1 本书前言 尽管各种关于神经网络 python 实战的资料已经很多了,但是这些资料也各有优点和缺点,有 时候也很难让新手有比较好的选择。 当我们明白何为“神经网络”,何为“反向传播”时,我们就已经具备了开始搭建和训练网络 的能力。此时 速搭建出一个网络, 我们可以开始训练,以及指导如何计算训练后的结果准确率等信息。 这也是我要开始写这么一本小书的初衷,我会把本小书控制在 3 小时的学习时间之内。也就 是说,只知道一丁点 python 知识和神经网络的概念,而从未使用过 pytorch 的读者,只需要三个 小时,就可以用 pytroch 搭建一个有模有样的神经网络系统了。 几年前,我在 Mooc 的《人工智能实战——Tensorflow 也可以使用自定义的数据集;而 DataLoader 是把样本进行访问和索引的工具,它实现了迭代器 功能,也就是说它可以依次将 batch_size 数量的样本导出。 注意,前面已经导入过的 python 包我们就不再重复导入了。 from torch . u t i l s . data import Dataset from torch . u t i l s . data import0 码力 | 29 页 | 1.40 MB | 1 年前3
AI大模型千问 qwen 中文文档72B; • 针对每种尺寸提供基础模型和 Chat 模型,并确保聊天模型按照人类偏好进行校准; • 对基础模型和 Chat 模型的多语言支持 • 基础模型和聊天模型都支持多种语言; • 支持工具调用、RAG(检索增强文本生成)、角色扮演、AI Agent 等; 想了解更多信息,欢迎访问: • 博客 • GitHub • Hugging Face • ModelScope • Qwen1 conda-forge::transformers 1.1.3 从源码安装 pip install git+https://github.com/huggingface/transformers 我们建议您使用 Python3.8 及以上版本和 Pytorch 2.0 及以上版本。 3 Qwen 1.2 快速开始 本指南帮助您快速上手 Qwen1.5 的使用,并提供了如下示例:Hugging Face Transformers API 服务。 首先,确保你已经安装 vLLM>=0.3.0 : pip install vllm 运行以下代码以构建 vllm 服务。此处我们以 Qwen1.5-7B-Chat 为例: python -m vllm.entrypoints.openai.api_server --model Qwen/Qwen1.5-7B-Chat 然后,您可以使用 create chat interface0 码力 | 56 页 | 835.78 KB | 1 年前3
机器学习课程-温州大学-01机器学习-引言黄海广 副教授 2 目录 01 机器学习概述 02 机器学习的类型 03 机器学习的背景知识 04 机器学习的开发流程 3 1. 机器学习概述 01 认识Python 01 机器学习概述 02 机器学习的类型 03 机器学习的背景知识 04 机器学习的开发流程 4 机器学习与人工智能、深度学习的关系 人工智能:机器展现的人类智能 ?) = ???(?1, ?) + ???(?2, ?) 50 Python 的环境的安装 ⚫Anaconda ⚫Jupyter notebook ⚫Pycharm 详细教程:https://zhuanlan.zhihu.com/p/59027692 3. 机器学习的背景知识-Python基础 51 Python 的环境的安装 ⚫Anaconda https://www.anaconda anaconda.com/distribution/ 通常选3.7版本,64位 可以用默认安装,右图两个选择框都勾上 52 Python 的环境的安装 ⚫Jupyter notebook 在cmd环境下,切换到代码的 目录,输入命令: jupyter notebook之后就可以 启动jupyter botebook编辑器 ,启动之后会自动打开浏览器 ,并访问http://localhost:80880 码力 | 78 页 | 3.69 MB | 1 年前3
pytorch 入门笔记-03- 神经网络高 * 宽)。如果你有单个样本,只需使用 input.unsqueeze(0) 来添加其它的维数 在继续之前,我们回顾一下到目前为止用到的类。 回顾: ● torch.Tensor:一个用过自动调用backward() 实现支持自动梯度计算的多维数组 ,并且保存关于 个向量的梯度 w.r.t. ● nn.Module:神经网络模块。封装参数、移动到 GPU 上运行、导出、加载等。 ● nn 定义,每个变量操作至少创建一个函数 点,每一个Tensor 的操作都会创建一个接到创建Tensor 和编码其历史 的函数的Function 节点。 重点如下: ● 定义一个网络 ● 处理输入,调用 backword 还剩: ● 计算损失 ● 更新网络权重 原文链接:pytorch 入门笔记 -03- 神经网络 损失函数 一个损失函数接受一对 (output, target) 作为 relu -> maxpool2d -> view -> linear -> relu -> linear -> relu -> linear -> MSELoss -> loss 所以,当我们调用 loss.backward() 时,整张计算图都会 根据 loss 进行微分,而且图中所有设置为 requires_grad=True 的张量 将会拥有一个随着梯度累积的 .grad 张量。0 码力 | 7 页 | 370.53 KB | 1 年前3
机器学习课程-温州大学-01深度学习-引言?) = ???(?1, ?) + ???(?2, ?) 51 Python 的环境的安装 ⚫Anaconda ⚫Jupyter notebook ⚫Pycharm 详细教程:https://zhuanlan.zhihu.com/p/59027692 3. 机器学习的背景知识-Python基础 52 Python 的环境的安装 ⚫Anaconda https://www.anaconda anaconda.com/distribution/ 通常选64位 可以用默认安装,右图两个选择框都勾上 53 Python 的环境的安装 ⚫Jupyter notebook 在cmd环境下,切换到代码的 目录,输入命令: jupyter notebook之后就可以 启动jupyter botebook编辑器 ,启动之后会自动打开浏览器 ,并访问http://localhost:8088 ,默认跳转到 如项目模板、远程开发、数据库支持等。个人学习 Python 使用免费的社区版 已足够。 如果有edu邮箱,那么推荐使用专业版,edu邮箱是可以免费使用专业版的。 安装过程照着提示一步步操作就可以了。 注意:安装路径尽量不使用带有 中文或空格 的目录,这样在之后的使用过程 中减少一些莫名的错误。 Python 的环境的安装 55 Python 的主要数据类型 ⚫字符串 ⚫整数与浮点数0 码力 | 80 页 | 5.38 MB | 1 年前3
机器学习课程-温州大学-03深度学习-PyTorch入门x.ge/x.eq/x.ne 随机种子 np.random.seed torch.manual_seed 1.Tensors张量的概念 10 Python、PyTorch 1.x与TensorFlow2.x的比较 类别 Python PyTorch 1+ TensorFlow 2+ 类型 nn.nd Tensor Tensor 自动求导 无 支持,示例 x=torch.tensor([2 会 按照逆序,通过Function的backward依次计算梯度。 22 2. Autograd自动求导 backward函数 backward函数是反向传播的入口点,在需要被求导的节点上调用 backward函数会计算梯度值到相应的节点上。 backward函数是反向求导数,使用链式法则求导。 backward需要一个重要的参数grad_tensor,对非标量节点求导,需要指定 gr 的grad属性中。 PyTorch文档中提到,如果grad属性不为空,新计算出来的梯度值会直接加到旧值 上面。 为什么不直接覆盖旧的结果呢? 这是因为有些Tensor可能有多个输出,那么就需要调用多个backward。叠加的处理 方式使得backward不需要考虑之前有没有被计算过导数,只需要加上去就行了,这 使得设计变得更简单。 因此我们用户在反向传播之前,常常需要用zero_grad函数对导数手动清零,确保0 码力 | 40 页 | 1.64 MB | 1 年前3
共 41 条
- 1
- 2
- 3
- 4
- 5













