积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(18)机器学习(18)

语言

全部英语(11)中文(简体)(7)

格式

全部PDF文档 PDF(18)
 
本次搜索耗时 0.033 秒,为您找到相关结果约 18 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    corresponds to GPUs in the NVIDIA Pascal, NVIDIA Volta™, NVIDIA Turing™, NVIDIA Ampere architecture, and NVIDIA Hopper™ architecture families. For a list of GPUs to which this compute capability corresponds, see was published by the authors of the Transformer-XL paper. Our implementation uses modified model architecture hyperparameters, our modifications were made to achieve better hardware usage and to take advantage corresponds to GPUs in the NVIDIA Pascal, NVIDIA Volta™, NVIDIA Turing™, NVIDIA Ampere architecture, and NVIDIA Hopper™ architecture families. For a list of GPUs to which this compute capability corresponds, see
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    The next section dives into the search for neural architectures. Neural Architecture Search On a high level, Neural Architecture Search (NAS) is similar to Hyperparameter Search. In both cases, we search define the architecture of the model that represents the blackbox function. In the hyperparameter tuning project, we searched for the value of dropout_rate which influences the model architecture. In fact the hyperparameters to be known prior to the start of the search. In their paper titled "Neural Architecture Search With Reinforcement Learning"5, Zoph et. al. employed neural networks to search for optimal
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    magazine (1991) So far, we have discussed generic techniques which are agnostic to the model architecture. These techniques can be applied in NLP, vision, speech or other domains. However, owing to their gains. Sometimes, it can be rewarding to go back to the drawing board and experiment with another architecture that better suits the task. As an analogy, when renovating a house to improve the lighting, it of Words for this family of model architectures. In practice, you need not be limited to this architecture for solving the CBOW (or Skipgram) task. 12 The Illustrated Word2vec - https://jalammar.github
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    effect in the world of Natural Language Processing (NLP) (see Figure 1-2), where the Transformer architecture significantly beat previous benchmarks such as the General Language Understanding Evaluation (GLUE) cost of trying combinations of different hyper-parameters (tuning), or experimenting with the architecture manually or automatically. These models also often have billions (or trillions) of parameters Compression Techniques These are general techniques and algorithms that look at optimizing the architecture itself, typically by compressing its layers, while trading off some quality in return. Often,
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    shuffle_weights(bert_classifier) return bert_classifier Let’s invoke the training with the BERT-Small model architecture, but not its weights (we will set the keep_tfhub_weights parameter to False). bert_small_fro Using a pre-trained BERT-Base model achieves a best accuracy of 93.97%, while using the same architecture but not the pre-trained model achieves a best accuracy of 90.07%. Refer to figure 6-9. Figure labels (13 labels per class). The SimCLR fine-tuned checkpoint with ResNet-50 as the encoder architecture also achieved a better accuracy on ImageNet with only 10% labels, when compared to a ResNet-50
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    the fixed-point SIMD instructions which allows data parallelism, the SSE instruction set in x86 architecture, and similar support on ARM processors as well as on specialized DSPs like the Qualcomm Hexagon that convolutional layers can seamlessly work with our images. Figure 2-12 shows the detailed architecture of our model. Figure 2-12: Illustration of the model that we created. We have two convolutional size could be variable (we could train with a batch size of 16, 32, 64 and so on). The model architecture is independent of the batch size. During inference (prediction mode), the typical value for the
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 keras tutorial

    ........................................................................................ 17 Architecture of Keras .................................................................................... complex neural network model. Let us understand the architecture of Keras framework and how Keras helps in deep learning in this chapter. Architecture of Keras Keras API can be divided into three main Keras applications in detail. Pre-trained models Trained model consists of two parts model Architecture and model Weights. Model weights are large file so we have to download and extract the feature
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    work using structured pruning and demonstrated that the pruned architecture with random initialization is no worse than the pruned architecture with the trained weights. In essence, the structural aspect training deep neural networks." 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE, 2018. Figure 5-6: In the above figure we work with a hypothetical distribution
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    these transformations is that they are intuitive and can be applied without changes to the model architecture. Their benefit is clear in the low data situations as demonstrated through the projects. In the department and the fraudster evolve over time to be increasingly sophisticated agents. Figure 3-15: Architecture of a Generative Adversarial Network (GAN). It has three phases: discriminator training, generator
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 26. LR多分类实战

    多分类问题 主讲人:龙良曲 Network Architecture Train em…. 下一课时 PyTorch全连接 层 Thank You.
    0 码力 | 8 页 | 566.94 KB | 1 年前
    3
共 18 条
  • 1
  • 2
前往
页
相关搜索词
PyTorchReleaseNotesEfficientDeepLearningBookEDLChapterAutomationArchitecturesIntroductionAdvancedTechniquesTechnicalReviewCompressionkerastutorial深度学习入门实战26LR分类
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩