积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(14)机器学习(14)

语言

全部英语(8)中文(简体)(6)

格式

全部PDF文档 PDF(14)
 
本次搜索耗时 0.040 秒,为您找到相关结果约 14 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    oxford_flowers102 dataset. In the next section, we will retrain the same model but with a twist! Project: Oxford Flower Classification With Hyperparameter Tuning Recall that in chapter 3, we trained a dropout rate was 0.2. The model reached the top accuracy of 70% after training for 100 epochs. In this project, we will let the HyperBand choose the best values for these hyperparameters and see if we can do alse) ) Let's resize the dataset splits to the same size. The target size is identical to the project in chapter 3. # Dataset image size IMG_SIZE = 264 def resize_image(image, label): image = tf.image
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    Smaller, Faster, and Better." arXiv preprint arXiv:2106.08962 (2021). It’s time for a hands-on project to apply our recent learnings and measure their impact. We will use the oxford_flowers102 dataset performances with and without data augmentation to measure the benefits of the techniques we just learnt. Project: Oxford Flowers Classification The oxford_flowers102 dataset contains 1020 labeled examples each good quality model. So, we use a pre-trained ResNet50 model and fine tune it. The code for this project is available as a Jupyter notebook here. Tensorflow provides easy access to this dataset through
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    pruning technique because of its simplicity and effectiveness. Later on in this chapter, we have a project that relies on it for sparsifying a deep learning model. The authors of the Optimal Brain Damage trained a model to predict masks for pets to build snapchat like filters. Let’s continue on the same project to demonstrate how we can create a pruned network without significant drop in accuracy in the next 09723v1 3 https://github.com/google/XNNPACK Project: Lightweight model for pet filters application Recall that our regular CNN model in the pet filters project consisted of thirteen convolution blocks and
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    your embeddings similar to Word2Vec, GloVe, and other embedding methods. How about we jump into a project now to demonstrate how embeddings can be used to achieve a high performing model while optimizing the recent literature. Using pre-trained embeddings to improve accuracy of a NLP task. In this project we will work with the DBPedia dataset, which has snippets of text from Wikipedia. Our goal is to attention parameters, the next component to attack is the softmax computation. The Low Rank methods project the keys and the values to a smaller dimension k to reduce the computation and memory complexity
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    such models, the high costs of pre-training get spread over the number of applications using it. Project: Using Pre-trained Language Models for News Classification That was a lot of talk without any code we need, and the number of training epochs we need to achieve our desired model quality. In this project we will demonstrate that self-supervised models provide both those efficiency gains. We will work quality and faster convergence than a BERT model that is trained from scratch. The code for this project is available here as a Jupyter notebook. We will not be explicitly demonstrating pre-training BERT
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    quantization section delves into the implementation details using code samples. We finish with a hands-on project that will walk you through the process of applying quantization in practical situations using popular precision trade off! It’s time to put our understanding of quantization into practice with a hands-on project. We will apply the learnings from weight and activation quantizations to a real world deep learning learning model and demonstrate the size reduction and inference efficiency improvements. The project will use the famous MNIST dataset! Figure 2-10: Latency v/s accuracy trade off for unoptimized representation
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    about PyTorch, including tutorials, documentation, and examples, see: ‣ PyTorch website ‣ PyTorch project This document provides information about the key features, software enhancements and improvements Facebook's Fairseq NLP Toolkit and is built on top of PyTorch. The original version in the Fairseq project was developed using Tensor Cores, which provides significant training speedup. Our implementation The original version PyTorch Release 19.12 PyTorch RN-08516-001_v23.07 | 282 in the Fairseq project was developed using Tensor Cores, which provides significant training speedup. Our implementation
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 keras tutorial

    environment while developing Python applications. Linux/Mac OS Linux or mac OS users, go to your project root directory and type the below command to create virtual environment, python3 -m venv kerasenv Keras 7 Quit virtual environment After finishing all your changes in your project, then simply run the below command to quit the environment: deactivate Anaconda Cloud We believe
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-机器学习项目流程

    • 在测试集上评估最佳模型 • 解释模型结果 • 得出结论 25 参考文献 1. https://github.com/WillKoehrsen/machine-learning-project- walkthrough 26 谢 谢!
    0 码力 | 26 页 | 1.53 MB | 1 年前
    3
  • pdf文档 复杂环境下的视觉同时定位与地图构建

    Vision Computing, 30:65-77, 2012. Visual-Inertial SLAM • 使用IMU数据提高鲁棒性 • 基于滤波的方法 • MSCKF, SLAM in Project Tango, … • 基于非线性优化的方法 • OKVIS, … • 没有真实IMU数据的情况下,是否能够通过视觉的方法 来模拟IMU数据? RKSLAM • 基于多单应矩阵的跟踪
    0 码力 | 60 页 | 4.61 MB | 1 年前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterAutomationTechniquesAdvancedCompressionArchitecturesTechnicalReviewPyTorchReleaseNoteskerastutorial机器学习课程温州大学项目流程复杂环境视觉同时定位地图构建
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩