 Keras: 基于 Python 的深度学习库"image_data_format": "channels_last", "epsilon": 1e-07, "floatx": "float32", "backend": "tensorflow" } 它包含以下字段: • 图 像 处 理 层 和 实 用 程 序 所 使 用 的 默 认 值 图 像 数 据 格 式 (channel_last 或 channels_first)。 • 用于防止在某些操作中被零除的 input_shape 参数(整数元组,不包含 样本表示的轴) ,例如,input_shape=(128, 128, 3) 表示 128x128 RGB 图像,在 data_format="channels_last" 时。 参数 • filters: 整数,输出空间的维度(即卷积中滤波器的输出数量)。 • kernel_size: 一个整数,或者 2 个整数表示的元组或列表,指明 2D 卷积窗口的宽度和高度。 (大小写敏感)。 • data_format: 字符串,channels_last (默认) 或 channels_first 之一,表示输入中 维度的顺序。channels_last 对应输入尺寸为 (batch, height, width, channels), channels_first 对应输入尺寸为 (batch, channels, height, width)。它默认为从 Keras0 码力 | 257 页 | 1.19 MB | 1 年前3 Keras: 基于 Python 的深度学习库"image_data_format": "channels_last", "epsilon": 1e-07, "floatx": "float32", "backend": "tensorflow" } 它包含以下字段: • 图 像 处 理 层 和 实 用 程 序 所 使 用 的 默 认 值 图 像 数 据 格 式 (channel_last 或 channels_first)。 • 用于防止在某些操作中被零除的 input_shape 参数(整数元组,不包含 样本表示的轴) ,例如,input_shape=(128, 128, 3) 表示 128x128 RGB 图像,在 data_format="channels_last" 时。 参数 • filters: 整数,输出空间的维度(即卷积中滤波器的输出数量)。 • kernel_size: 一个整数,或者 2 个整数表示的元组或列表,指明 2D 卷积窗口的宽度和高度。 (大小写敏感)。 • data_format: 字符串,channels_last (默认) 或 channels_first 之一,表示输入中 维度的顺序。channels_last 对应输入尺寸为 (batch, height, width, channels), channels_first 对应输入尺寸为 (batch, channels, height, width)。它默认为从 Keras0 码力 | 257 页 | 1.19 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automationthat can manipulate the structure of a network. The number of dense units, number of convolution channels or the size of convolution kernels can sometimes be 4 Jaderberg, Max, et al. "Population based rolling_accuracies_window=20, max_branch_length=2, blocks=5, cells=2, initial_width=1, initial_channels=4 ) STATE_SPACE = [ dict(name='hidden_state', values=list(range(2)), count=2), dict( name=primitives """ def __init__(self, stride=1, channels=64): self.channels = channels self.stride = stride self.kwargs = dict(strides=(1, 1), padding='same') def repair_channels(self, inp): """ This method sends0 码力 | 33 页 | 2.48 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automationthat can manipulate the structure of a network. The number of dense units, number of convolution channels or the size of convolution kernels can sometimes be 4 Jaderberg, Max, et al. "Population based rolling_accuracies_window=20, max_branch_length=2, blocks=5, cells=2, initial_width=1, initial_channels=4 ) STATE_SPACE = [ dict(name='hidden_state', values=list(range(2)), count=2), dict( name=primitives """ def __init__(self, stride=1, channels=64): self.channels = channels self.stride = stride self.kwargs = dict(strides=(1, 1), padding='same') def repair_channels(self, inp): """ This method sends0 码力 | 33 页 | 2.48 MB | 1 年前3
 keras tutorialhome directory inside and go to .keras/keras.json. keras.json { "image_data_format": "channels_last", "epsilon": 1e-07, "floatx": "float32", "backend": "tensorflow" } Here, = theano in keras.json file. It is described below: keras.json { "image_data_format": "channels_last", "epsilon": 1e-07, "floatx": "float32", "backend": "theano" } Now save your specified below: >>> k.backend() 'tensorflow' >>> k.epsilon() 1e-07 >>> k.image_data_format() 'channels_last' >>> k.floatx() 'float32' Let us understand some of the significant backend functions0 码力 | 98 页 | 1.57 MB | 1 年前3 keras tutorialhome directory inside and go to .keras/keras.json. keras.json { "image_data_format": "channels_last", "epsilon": 1e-07, "floatx": "float32", "backend": "tensorflow" } Here, = theano in keras.json file. It is described below: keras.json { "image_data_format": "channels_last", "epsilon": 1e-07, "floatx": "float32", "backend": "theano" } Now save your specified below: >>> k.backend() 'tensorflow' >>> k.epsilon() 1e-07 >>> k.image_data_format() 'channels_last' >>> k.floatx() 'float32' Let us understand some of the significant backend functions0 码力 | 98 页 | 1.57 MB | 1 年前3
 动手学深度学习 v2.0该函数有三个参数,分别对应于卷积层的数量num_convs、输入通道的数量in_channels 和输出通道的数 量out_channels. import torch from torch import nn from d2l import torch as d2l def vgg_block(num_convs, in_channels, out_channels): (continues on next page) in range(num_convs): layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)) layers.append(nn.ReLU()) in_channels = out_channels layers.append(nn.MaxPool2d(kernel_size=2,stride=2)) conv_blks = [] in_channels = 1 # 卷积层部分 for (num_convs, out_channels) in conv_arch: conv_blks.append(vgg_block(num_convs, in_channels, out_channels)) in_channels = out_channels return nn.Sequential(0 码力 | 797 页 | 29.45 MB | 1 年前3 动手学深度学习 v2.0该函数有三个参数,分别对应于卷积层的数量num_convs、输入通道的数量in_channels 和输出通道的数 量out_channels. import torch from torch import nn from d2l import torch as d2l def vgg_block(num_convs, in_channels, out_channels): (continues on next page) in range(num_convs): layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)) layers.append(nn.ReLU()) in_channels = out_channels layers.append(nn.MaxPool2d(kernel_size=2,stride=2)) conv_blks = [] in_channels = 1 # 卷积层部分 for (num_convs, out_channels) in conv_arch: conv_blks.append(vgg_block(num_convs, in_channels, out_channels)) in_channels = out_channels return nn.Sequential(0 码力 | 797 页 | 29.45 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniquescompatible with 2-D convolutional layers which expect one dimension for the channels. Typically with an RGB image there are 3 channels, but since there is a grayscale image there is only one channel which the helps in making them lie between [-1.0, 1.0]. x /= 127.5 x -= 1.0 # Add one dimension for the channels. x = np.expand_dims(x, 3) return x def load_data(ds=tf.keras.datasets.mnist): """Returns the0 码力 | 33 页 | 1.96 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniquescompatible with 2-D convolutional layers which expect one dimension for the channels. Typically with an RGB image there are 3 channels, but since there is a grayscale image there is only one channel which the helps in making them lie between [-1.0, 1.0]. x /= 127.5 x -= 1.0 # Add one dimension for the channels. x = np.expand_dims(x, 3) return x def load_data(ds=tf.keras.datasets.mnist): """Returns the0 码力 | 33 页 | 1.96 MB | 1 年前3
 深度学习与PyTorch入门实战 - 38. 卷积神经网络org/an-intuitive-guide-to-convolutional-neural- networks-260c2de0a050 Notation Input_channels: Kernel_channels: 2 ch Kernel_size: Stride: Padding: Multi-Kernels https://skymind.ai/wiki/convolutional-network0 码力 | 14 页 | 1.14 MB | 1 年前3 深度学习与PyTorch入门实战 - 38. 卷积神经网络org/an-intuitive-guide-to-convolutional-neural- networks-260c2de0a050 Notation Input_channels: Kernel_channels: 2 ch Kernel_size: Stride: Padding: Multi-Kernels https://skymind.ai/wiki/convolutional-network0 码力 | 14 页 | 1.14 MB | 1 年前3
 《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别TensorFlow” Try it 输入与输出数据处理 输入数据处理 图像处理:RGB图 -> 灰度图 -> 规范化数据 输入数据处理 适配 Keras 图像数据格式:“channels_frist” 或 “channels_last” 输出数据处理 One-hot 编码:验证码转向量 输出数据处理 解码:模型输出向量转验证码 argmax “Hello TensorFlow” Try0 码力 | 51 页 | 2.73 MB | 1 年前3 《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别TensorFlow” Try it 输入与输出数据处理 输入数据处理 图像处理:RGB图 -> 灰度图 -> 规范化数据 输入数据处理 适配 Keras 图像数据格式:“channels_frist” 或 “channels_last” 输出数据处理 One-hot 编码:验证码转向量 输出数据处理 解码:模型输出向量转验证码 argmax “Hello TensorFlow” Try0 码力 | 51 页 | 2.73 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniquesremoved the first neuron. Now, consider a convolution layer with 3x3 sized filters and 3 input channels. At 1-D granularity, a vector of weights is pruned. An entire kernel is pruned when the pruning computation. In the case of this convolutional layer, we can drop rows, columns, kernels, and even whole channels. Libraries like XNNPACK3,4 can help accelerate networks on a variety of web, mobile, and embedded0 码力 | 34 页 | 3.18 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniquesremoved the first neuron. Now, consider a convolution layer with 3x3 sized filters and 3 input channels. At 1-D granularity, a vector of weights is pruned. An entire kernel is pruned when the pruning computation. In the case of this convolutional layer, we can drop rows, columns, kernels, and even whole channels. Libraries like XNNPACK3,4 can help accelerate networks on a variety of web, mobile, and embedded0 码力 | 34 页 | 3.18 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturesm) where h, w represent the spatial dimensions (height and width) and m is the number of input channels. Figure 4-20 demonstrates a regular convolution operation over this input using n kernels of dimensions with a single stride produces an output with dimensions (h, w, n) where n is the number of output channels. This operation requires h x w x n x dk x dk x m operations. Figure 4-20: Depiction of input, output0 码力 | 53 页 | 3.92 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturesm) where h, w represent the spatial dimensions (height and width) and m is the number of input channels. Figure 4-20 demonstrates a regular convolution operation over this input using n kernels of dimensions with a single stride produces an output with dimensions (h, w, n) where n is the number of output channels. This operation requires h x w x n x dk x dk x m operations. Figure 4-20: Depiction of input, output0 码力 | 53 页 | 3.92 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquesrecomputes the pixel values. The rotation of an RGB image of 100x100 requires at least 100x100x3 (3 channels) computations. Two transformations would require 2x100x100x3 computations. When the transformations path, brightness=2) Channel Intensity Shift shifts the RGB channel values uniformly across all channels. where c represents a channel and s is the shift amount. As opposed to the brightness transformation0 码力 | 56 页 | 18.93 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquesrecomputes the pixel values. The rotation of an RGB image of 100x100 requires at least 100x100x3 (3 channels) computations. Two transformations would require 2x100x100x3 computations. When the transformations path, brightness=2) Channel Intensity Shift shifts the RGB channel values uniformly across all channels. where c represents a channel and s is the shift amount. As opposed to the brightness transformation0 码力 | 56 页 | 18.93 MB | 1 年前3
共 13 条
- 1
- 2













