 PyTorch Release Notespaper. This model script is available on GitHub. ‣ TransformerXL model: This transformer-based language model has a segment-level recurrence and a novel relative positional encoding. The enhancements Transformers (BERT) is a new method of pretraining language representations which obtains state-of-the-art results on a wide array of Natural Language Processing (NLP) tasks. This model is based on the the BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding paper. The NVIDIA BERT implementation is an optimized version of the Hugging Face implementation paper that leverages0 码力 | 365 页 | 2.94 MB | 1 年前3 PyTorch Release Notespaper. This model script is available on GitHub. ‣ TransformerXL model: This transformer-based language model has a segment-level recurrence and a novel relative positional encoding. The enhancements Transformers (BERT) is a new method of pretraining language representations which obtains state-of-the-art results on a wide array of Natural Language Processing (NLP) tasks. This model is based on the the BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding paper. The NVIDIA BERT implementation is an optimized version of the Hugging Face implementation paper that leverages0 码力 | 365 页 | 2.94 MB | 1 年前3
 AI大模型千问 qwen 中文文档Qwen Qwen is the large language model and large multimodal model series of the Qwen Team, Alibaba Group. Now the large language models have been upgraded to Qwen1.5. Both language models and multimodal data and post-trained on quality data for aligning to human preferences. Qwen is capable of natural language understanding, text generation, vision understanding, audio understanding, tool use, role play, apply_chat_template() to format your inputs as shown␣ �→below prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user"0 码力 | 56 页 | 835.78 KB | 1 年前3 AI大模型千问 qwen 中文文档Qwen Qwen is the large language model and large multimodal model series of the Qwen Team, Alibaba Group. Now the large language models have been upgraded to Qwen1.5. Both language models and multimodal data and post-trained on quality data for aligning to human preferences. Qwen is capable of natural language understanding, text generation, vision understanding, audio understanding, tool use, role play, apply_chat_template() to format your inputs as shown␣ �→below prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user"0 码力 | 56 页 | 835.78 KB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Reviewchapter by presenting self-supervised learning which has been instrumental in the success of natural language models like BERT. Self-Supervised learning helps models to quickly achieve impressive quality with We will describe the general principles of Self-Supervised learning which are applicable to both language and vision. We will also demonstrate its efficacy through a colab. Finally, we introduce miscellaneous this works shortly. For now, let's assume that we have such a general model that works for natural language inputs. Then by definition the model should be able to encode the given text in a sequence of embeddings0 码力 | 31 页 | 4.03 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Reviewchapter by presenting self-supervised learning which has been instrumental in the success of natural language models like BERT. Self-Supervised learning helps models to quickly achieve impressive quality with We will describe the general principles of Self-Supervised learning which are applicable to both language and vision. We will also demonstrate its efficacy through a colab. Finally, we introduce miscellaneous this works shortly. For now, let's assume that we have such a general model that works for natural language inputs. Then by definition the model should be able to encode the given text in a sequence of embeddings0 码力 | 31 页 | 4.03 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning TechniquesModel quality is an important benchmark to evaluate the performance of a deep learning model. A language translation application that uses a low quality model would struggle with consumer adoption because sets up the modules, functions and variables that will be used later on. It initializes the Natural Language Toolkit (NLTK) and creates a text sequence from a sentence. from random import choice, randint of sentiment analysis, the transformation must preserve the original sentiment of the text. For a language translation model, the label sequence and the mutated input must have the same meaning. It is fair0 码力 | 56 页 | 18.93 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning TechniquesModel quality is an important benchmark to evaluate the performance of a deep learning model. A language translation application that uses a low quality model would struggle with consumer adoption because sets up the modules, functions and variables that will be used later on. It initializes the Natural Language Toolkit (NLTK) and creates a text sequence from a sentence. from random import choice, randint of sentiment analysis, the transformation must preserve the original sentiment of the text. For a language translation model, the label sequence and the mutated input must have the same meaning. It is fair0 码力 | 56 页 | 18.93 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 1 - IntroductionLearning models have beaten previous baselines significantly in many tasks in computer vision, natural language understanding, speech, and so on. Their rise can be attributed to a combination of things: Faster effect in the world of Natural Language Processing (NLP) (see Figure 1-2), where the Transformer architecture significantly beat previous benchmarks such as the General Language Understanding Evaluation (GLUE) Tom B., et al. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020). 4 Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding0 码力 | 21 页 | 3.17 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 1 - IntroductionLearning models have beaten previous baselines significantly in many tasks in computer vision, natural language understanding, speech, and so on. Their rise can be attributed to a combination of things: Faster effect in the world of Natural Language Processing (NLP) (see Figure 1-2), where the Transformer architecture significantly beat previous benchmarks such as the General Language Understanding Evaluation (GLUE) Tom B., et al. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020). 4 Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding0 码力 | 21 页 | 3.17 MB | 1 年前3
 亚马逊AWSAI Services OverviewDeparture Date Flight Booking “Book a flight to London” Automatic Speech Recognition Natural Language Understanding Book Flight London Utterances Flight booking London Heathrow Intent / Slot Departure Date Flight Booking “Book a flight to London” Automatic Speech Recognition Natural Language Understanding Book Flight London Utterances Flight booking London Heathrow Intent / Slot Departure Date Flight Booking “Book a flight to London” Automatic Speech Recognition Natural Language Understanding Book Flight London Utterances Flight booking London Heathrow Intent / Slot0 码力 | 56 页 | 4.97 MB | 1 年前3 亚马逊AWSAI Services OverviewDeparture Date Flight Booking “Book a flight to London” Automatic Speech Recognition Natural Language Understanding Book Flight London Utterances Flight booking London Heathrow Intent / Slot Departure Date Flight Booking “Book a flight to London” Automatic Speech Recognition Natural Language Understanding Book Flight London Utterances Flight booking London Heathrow Intent / Slot Departure Date Flight Booking “Book a flight to London” Automatic Speech Recognition Natural Language Understanding Book Flight London Utterances Flight booking London Heathrow Intent / Slot0 码力 | 56 页 | 4.97 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturesequivalent). 16 Kaliamoorthi, P., Siddhant, A., Li, E., & Johnson, M. (2021). Distilling Large Language Models into Tiny and Effective Students using pQRNN. arXiv preprint arXiv:2101.08890. 15 Chung Fevry, T., Tsai, H., Johnson, M., & Ruder, S. (2020). Rethinking embedding coupling in pre-trained language models. arXiv preprint arXiv:2010.12821. A common solution for visual domains is to use a model training a model to translate English language text to Spanish language. Input and outputs of such a model are English language token sequences and Spanish language token sequences respectively. This problem0 码力 | 53 页 | 3.92 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturesequivalent). 16 Kaliamoorthi, P., Siddhant, A., Li, E., & Johnson, M. (2021). Distilling Large Language Models into Tiny and Effective Students using pQRNN. arXiv preprint arXiv:2101.08890. 15 Chung Fevry, T., Tsai, H., Johnson, M., & Ruder, S. (2020). Rethinking embedding coupling in pre-trained language models. arXiv preprint arXiv:2010.12821. A common solution for visual domains is to use a model training a model to translate English language text to Spanish language. Input and outputs of such a model are English language token sequences and Spanish language token sequences respectively. This problem0 码力 | 53 页 | 3.92 MB | 1 年前3
 Chatbots 中对话式交互系统的分析与应用inform(order_op=预订, restaurant_name=云海肴, subbranch=中关村店) request(phone, name) 理解模块 对话管理 模块 产生模块 Spoken Language Understanding (SLU) • 结构化表示自然语言的语义: • act1 (slot1=value1, slot2=value2,…), act2 (slot1=value1 • 作为序列决策过程进行优化:增强学习 Milica Gašić (2014) 语言生成 Natural Language Generation (NLG) • 把结构化的系统动作翻译成人类的语言 Steve Young (2016) 语言生成 Natural Language Generation (NLG) • 把结构化的系统动作翻译成人类的语言 • Semantically Semantically Conditioned LSTM (SC-LSTM) Tsung-Hsien Wen (2016) 语言生成 Natural Language Generation (NLG) • 把结构化的系统动作翻译成人类的语言 • Semantically Conditioned LSTM (SC-LSTM) Tsung-Hsien Wen (2016) Task-Bot: 其他框架 • Microsoft:0 码力 | 39 页 | 2.24 MB | 1 年前3 Chatbots 中对话式交互系统的分析与应用inform(order_op=预订, restaurant_name=云海肴, subbranch=中关村店) request(phone, name) 理解模块 对话管理 模块 产生模块 Spoken Language Understanding (SLU) • 结构化表示自然语言的语义: • act1 (slot1=value1, slot2=value2,…), act2 (slot1=value1 • 作为序列决策过程进行优化:增强学习 Milica Gašić (2014) 语言生成 Natural Language Generation (NLG) • 把结构化的系统动作翻译成人类的语言 Steve Young (2016) 语言生成 Natural Language Generation (NLG) • 把结构化的系统动作翻译成人类的语言 • Semantically Semantically Conditioned LSTM (SC-LSTM) Tsung-Hsien Wen (2016) 语言生成 Natural Language Generation (NLG) • 把结构化的系统动作翻译成人类的语言 • Semantically Conditioned LSTM (SC-LSTM) Tsung-Hsien Wen (2016) Task-Bot: 其他框架 • Microsoft:0 码力 | 39 页 | 2.24 MB | 1 年前3
 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入模型中,Transfomer堆叠至48层。GPT-2的数据集增加到8 million的网页、大小40GB的文本。 图:GPT-2通过调整原模型和采用多任务方式来让AI更贴近“通才” 水平 GPT的发展 37 资料来源:《 Language Models are Few-Shot Learners》论文 • 预训练加微调范式中,可能在这种范式下实现的 泛化可能很差,因为该模型过于特定于训练分布, 并且在其之外无法很好地泛化。 少量样本)的综 合表现是在无监督模式下最优的 图:GPT-3的模型参数在GPT-2的基础上增加110多倍 资料来源:《 Language Models are Few-Shot Learners》 GPT的发展 39 资料来源:《Training language models to follow instructions with human feedback》论文 ◼ Instru 规模如下图所示(labeler指的是OpenAI的标注人员,customer指GPT-3 API的用户) GPT的发展 40 ChatGPT核心技术优势 资料来源:《Training language models to follow instructions with human feedback》论文 ◼ InstructGPT与ChatGPT属于相同代际的模型,ChatGPT只是在0 码力 | 44 页 | 2.36 MB | 1 年前3 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入模型中,Transfomer堆叠至48层。GPT-2的数据集增加到8 million的网页、大小40GB的文本。 图:GPT-2通过调整原模型和采用多任务方式来让AI更贴近“通才” 水平 GPT的发展 37 资料来源:《 Language Models are Few-Shot Learners》论文 • 预训练加微调范式中,可能在这种范式下实现的 泛化可能很差,因为该模型过于特定于训练分布, 并且在其之外无法很好地泛化。 少量样本)的综 合表现是在无监督模式下最优的 图:GPT-3的模型参数在GPT-2的基础上增加110多倍 资料来源:《 Language Models are Few-Shot Learners》 GPT的发展 39 资料来源:《Training language models to follow instructions with human feedback》论文 ◼ Instru 规模如下图所示(labeler指的是OpenAI的标注人员,customer指GPT-3 API的用户) GPT的发展 40 ChatGPT核心技术优势 资料来源:《Training language models to follow instructions with human feedback》论文 ◼ InstructGPT与ChatGPT属于相同代际的模型,ChatGPT只是在0 码力 | 44 页 | 2.36 MB | 1 年前3
 动手学深度学习 v2.0词或字符。假设长度为T的文本序列中的词元依次为x1, x2, . . . , xT 。于是,xt(1 ≤ t ≤ T)可以被认为是文 本序列在时间步t处的观测或标签。在给定这样的文本序列时,语言模型(language model)的目标是估计序 列的联合概率 P(x1, x2, . . . , xT ). (8.3.1) 例如,只需要一次抽取一个词元xt ∼ P(xt | xt−1, . . . , 们看一下如何使用循环神经网络来构建语言模型。设小批量大小为1,批量中的文本序列为“machine”。为 了简化后续部分的训练,我们考虑使用 字符级语言模型(character‐level language model),将文本词元化 为字符而不是单词。图8.4.2演示了如何通过基于字符级语言建模的循环神经网络,使用当前的和先前的字符 预测下一个字符。 图8.4.2: 基于循环神经网络的字 的文本序列对,序列对由英文文本序列和翻译后的法语文本序列组成。请注意,每个文本序列可以是一个句 子,也可以是包含多个句子的一个段落。在这个将英语翻译成法语的机器翻译问题中,英语是源语言(source language),法语是目标语言(target language)。 #@save d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip', '94646ad1522d90 码力 | 797 页 | 29.45 MB | 1 年前3 动手学深度学习 v2.0词或字符。假设长度为T的文本序列中的词元依次为x1, x2, . . . , xT 。于是,xt(1 ≤ t ≤ T)可以被认为是文 本序列在时间步t处的观测或标签。在给定这样的文本序列时,语言模型(language model)的目标是估计序 列的联合概率 P(x1, x2, . . . , xT ). (8.3.1) 例如,只需要一次抽取一个词元xt ∼ P(xt | xt−1, . . . , 们看一下如何使用循环神经网络来构建语言模型。设小批量大小为1,批量中的文本序列为“machine”。为 了简化后续部分的训练,我们考虑使用 字符级语言模型(character‐level language model),将文本词元化 为字符而不是单词。图8.4.2演示了如何通过基于字符级语言建模的循环神经网络,使用当前的和先前的字符 预测下一个字符。 图8.4.2: 基于循环神经网络的字 的文本序列对,序列对由英文文本序列和翻译后的法语文本序列组成。请注意,每个文本序列可以是一个句 子,也可以是包含多个句子的一个段落。在这个将英语翻译成法语的机器翻译问题中,英语是源语言(source language),法语是目标语言(target language)。 #@save d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip', '94646ad1522d90 码力 | 797 页 | 29.45 MB | 1 年前3
共 23 条
- 1
- 2
- 3













