积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(22)机器学习(22)

语言

全部英语(13)中文(简体)(9)

格式

全部PDF文档 PDF(22)
 
本次搜索耗时 0.075 秒,为您找到相关结果约 22 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    substantial labor, time and money to collect more samples. In 2019, Kaggle1 opened a competition to design a model to identify humpback whales from the pictures of their flukes2. The primary challenge with address the holes. Figure 3-6: Image Transformations. The source image (center) is taken from Google Open Images Dataset V6. It is authored by Mike Baird and is licensed under CC BY 2.0. The image is resized The top-center is a turtle (resized) image from Open Images Dataset V6 and authored by Joy Holland. The bottom-center is a tortoise (resized) from Open Images Dataset V6 and authored by J. P. Both the
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    which case uint8 leads to unnecessary space wastage. If that is indeed the case, you might have to design your own mechanism to pack in multiple quantized values in one of the supported data types (using (prediction mode), the typical value for the batch size is 1 because we predict one value at a time. The design of this model is arbitrary. You can experiment with different ideas such as stacking more convolutional format(model_name, quantized_export)) print('Model Size: {:.2f} KB'.format(len(tflite_model_str) / 1024.)) with open(os.path.join('tflite_models', model_name), 'wb') as f: f.write(tflite_model_str) # Evaluate the
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    explore the dataset! First, let's see what classes we have. import os import pprint class_names = open(os.path.join('dbpedia_csv', 'classes.txt')).read().splitlines() num_classes = len(class_names) # and Gated Recurrent Unit20 (GRU) cells. However, RNNs are slow to train because of their sequential design such that the current timestamp execution depends on the results of previous timestep. Another drawback computer vision and pattern recognition. 2017. on mobile and edge devices. Let’s say you want to design a mobile application to highlight pets in a picture. A DSC model is a perfect choice for such an
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 keras tutorial

    Keras i Keras ii About the Tutorial Keras is an open source deep learning framework for python. It has been developed by an artificial intelligence researcher learning is one of the major subfield of machine learning framework. Machine learning is the study of design of algorithms, inspired from the model of human brain. Deep learning is becoming more popular in TensorFlow, Theano, etc., for creating deep learning models. Overview of Keras Keras runs on top of open source machine libraries like TensorFlow, Theano or Cognitive Toolkit (CNTK). Theano is a python
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    help accelerate networks on a variety of web, mobile, and embedded devices, provided the user can design networks that match their constraints. One might wonder what are the drawbacks of structured sparsity TFLiteConverter.from_keras_model(final_model) tflite_clustered_model = converter.convert() with open(clustered_tflite_file, 'wb') as f: f.write(tflite_clustered_model) print('Saved clustered TFLite
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    09846 (2017). searched with the techniques that we discussed in this section. However, to truly design a Neural Network from scratch, we need a different approach. The next section dives into the search output action from the previous time step as input to generate the next action and so on. We can design a recurrent model with a fixed or a variable number of time steps. Figure 7-5 shows a general architecture generated child networks performed at par with the SOTA networks at the time. However, this controller design had two main drawbacks. First, the architecture of the child network is tied closely to the controller
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    History 对象。 异常 • RuntimeError: 如果模型从未编译。 例 def generate_arrays_from_file(path): while 1: f = open(path) for line in f: # create Numpy arrays of input data # and labels, from each line in the file initial_epoch: 开始训练的轮次(有助于恢复之前的训练)。 返回 一个 History 对象。 例 def generate_arrays_from_file(path): while 1: f = open(path) for line in f: # 从文件中的每一行生成输入数据和标签的 numpy 数组, x1, x2, y = process_line(line) yield ({'input_1': print(batch)) # 把训练轮损失数据流到 JSON 格式的文件。文件的内容 # 不是完美的 JSON 格式,但是时每一行都是 JSON 对象。 import json json_log = open('loss_log.json', mode='wt', buffering=1) json_logging_callback = LambdaCallback( on_epoch_end=lambda
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    humans and other biological organisms Feng Li (SDU) Overview September 6, 2023 12 / 57 Steps to Design a Learning System Choose the training experience Choose exactly what is to be learned, i.e. the environment Learner can construct an arbitrary example and query an oracle for its label Learner can design and run experiments directly in the environment without any human guidance. Feng Li (SDU) Overview Sometimes we have missing data, that is, variables whose values are unknown, such that the corresponding design matrix will then have “holes” in it The goal of matrix completion is to infer plausible values for
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    join('..', 'data'), exist_ok=True) data_file = os.path.join('..', 'data', 'house_tiny.csv') with open(data_file, 'w') as f: f.write('NumRooms,Alley,Price\n') # 列名 f.write('NA,Pave,127500\n') # 每行表示一个数据样本 os.path.join(cache_dir, url.split('/')[-1]) if os.path.exists(fname): sha1 = hashlib.sha1() with open(fname, 'rb') as f: while True: data = f.read(1048576) if not data: break sha1.update(data) if fname # 命中缓存 print(f'正在从{url}下载{fname}...') r = requests.get(url, stream=True, verify=True) with open(fname, 'wb') as f: f.write(r.content) return fname 我们还需实现两个实用函数:一个将下载并解压缩一个zip或tar文件,另一个是将本书中使用的所有数据集
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》8-TensorFlow社区参与指南

    �����/��������/��.�-�����.�-���� TensorFlow ��-Kubeflow ���� AI ���� Business Requirement Production Design Data Processing Model Training Model Visualization Model Serving Production Verification
    0 码力 | 46 页 | 38.88 MB | 1 年前
    3
共 22 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterTechniquesCompressionArchitectureskerastutorialAdvancedAutomationKeras基于Python深度学习LectureOverview动手v2TensorFlow快速入门实战社区参与指南
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩